AI-generated Key Takeaways
-  Connected Sheets allows you to analyze BigQuery and Looker data directly within Google Sheets and is accessible programmatically using the Spreadsheet service. 
-  Common actions with Connected Sheets, such as connecting to a data source or adding charts, are performed using specific DataSourceclasses and methods in Apps Script.
-  To access BigQuery or Looker data, you must include enableBigQueryExecution()orenableLookerExecution()respectively in your Apps Script code, which adds the necessary OAuth scopes.
-  Data source objects can be added and refreshed asynchronously, with methods available to check the execution status and handle errors. 
-  Triggers, including time-driven and event triggers, can be used to automate data source functions, such as refreshing data on a schedule or when a parameter is edited. 
Connected Sheets is a Google Sheets feature that lets you analyze BigQuery and Looker data directly within Sheets. You can access Connected Sheets programmatically with the Spreadsheet service.
Common Connected Sheets actions
Use the DataSource 
classes and objects to connect to BigQuery or Looker and
analyze data.
The following table lists the most common DataSource 
actions and
how to create them in Apps Script:
| Action | Google Apps Script class | Method to use | 
|---|---|---|
|   
Connect a sheet to a supported data source | DataSourceSpec | SpreadsheetApp.newDataSourceSpec() | 
|   
Choose a data source | DataSource | Spreadsheet.insertDataSourceSheet().getDataSource() | 
|   
Add a data source sheet | DataSourceSheet | Spreadsheet.insertDataSourceSheet() | 
|   
Add a pivot table | DataSourcePivotTable | Range.insertDataSourcePivotTable() | 
|   
Pull data into an extract | DataSourceTable | Range.insertDataSourceTable() | 
|   
Use a formula | DataSourceFormula | Range.setFormula() | 
|   
Add a chart | DataSourceChart | Sheet.insertDataSourceChart() | 
Add required authorization scopes
To access BigQuery data, you must include the enableBigQueryExecution() 
method
in your Google Apps Script code. This method adds the required bigquery.readonly 
OAuth scope to your Google Apps Script project.
The following sample shows the SpreadsheetApp.enableBigQueryExecution() 
method
called within a function:
function addDataSource () { SpreadsheetApp . enableBigQueryExecution (); var spreadsheet = SpreadsheetApp . getActive (); }
To access Looker data, you must include the enableLookerExecution() 
method in
your Google Apps Script code. Accessing Looker in Apps Script
will reuse your existing Google Account Link with Looker.
The following sample shows the SpreadsheetApp.enableLookerExecution() 
method
called within a function:
function addDataSource () { SpreadsheetApp . enableLookerExecution (); var spreadsheet = SpreadsheetApp . getActive (); }
Add additional OAuth scopes to the manifest file
When connecting with BigQuery, most OAuth scopes are automatically added to the manifest file based on the functions used in your code. If you need additional scopes to access certain BigQuery data, you can set explicit scopes .
For example, to query BigQuery data hosted within Google Drive , you must add a Drive OAuth scope to your manifest file.
The following sample shows the oauthScopes 
portion of a manifest file. It adds
a drive OAuth scope in addition to the minimum required spreadsheet 
and bigquery.readonly 
OAuth scopes:
{ ...
  "oauthScopes": [
    "https://www.googleapis.com/auth/bigquery.readonly",
    "https://www.googleapis.com/auth/spreadsheets",
    "https://www.googleapis.com/auth/drive" ],
... } 
Example: Create and refresh a data source object
The following examples shows how to add a data source, create a data source object from the data source, refresh the data source object, and get the execution status.
Add a data source
The following examples show how to add a BigQuery and a Looker data source respectively.
BigQuery
To add a BigQuery data source to a spreadsheet, insert a data source sheet with a data source spec. The data source sheet is automatically refreshed to fetch preview data.
Replace <YOUR_PROJECT_ID> 
below with a valid Google Cloud project ID.
  // 
  
 For 
  
 operations 
  
 that 
  
 fetch 
  
 data 
  
 from 
  
 BigQuery 
 , 
  
 enableBigQueryExecution 
 () 
  
 must 
  
 be 
  
 called 
 . 
 SpreadsheetApp 
 . 
 enableBigQueryExecution 
 (); 
 var 
  
 spreadsheet 
  
 = 
  
 SpreadsheetApp 
 . 
 create 
 ( 
 'Test connected sheets' 
 ); 
 Logger 
 . 
 log 
 ( 
 'New test spreadsheet: 
 %s 
 ' 
 , 
  
 spreadsheet 
 . 
 getUrl 
 ()); 
 // 
  
 Build 
  
 data 
  
 source 
  
 spec 
  
 by 
  
 selecting 
  
 a 
  
 table 
 . 
 var 
  
 dataSourceSpec 
  
 = 
  
 SpreadsheetApp 
 . 
 newDataSourceSpec 
 () 
  
 . 
 asBigQuery 
 () 
  
 . 
 setProjectId 
 ( 
 '<YOUR_PROJECT_ID>' 
 ) 
  
 . 
 setTableProjectId 
 ( 
 'bigquery-public-data' 
 ) 
  
 . 
 setDatasetId 
 ( 
 'ncaa_basketball' 
 ) 
  
 . 
 setTableId 
 ( 
 'mbb_historical_tournament_games' 
 ) 
  
 . 
 build 
 (); 
 // 
  
 Add 
  
 data 
  
 source 
  
 and 
  
 its 
  
 associated 
  
 data 
  
 source 
  
 sheet 
 . 
 var 
  
 dataSourceSheet 
  
 = 
  
 spreadsheet 
 . 
 insertDataSourceSheet 
 ( 
 dataSourceSpec 
 ); 
 var 
  
 dataSource 
  
 = 
  
 dataSourceSheet 
 . 
 getDataSource 
 (); 
 
 
Looker
To add a Looker data source to a spreadsheet, insert a data source sheet with a data source spec. The data source sheet is automatically refreshed to fetch preview data.
Replace <INSTANCE_URL> 
, <MODEL_NAME> 
, <EXPLORE_NAME> 
in the following
sample with a valid Looker instance URL, model name and explore name
respectively.
  // 
  
 For 
  
 operations 
  
 that 
  
 fetch 
  
 data 
  
 from 
  
 Looker 
 , 
  
 enableLookerExecution 
 () 
  
 must 
  
 be 
  
 called 
 . 
 SpreadsheetApp 
 . 
 enableLookerExecution 
 (); 
 var 
  
 spreadsheet 
  
 = 
  
 SpreadsheetApp 
 . 
 create 
 ( 
 'Test connected sheets' 
 ); 
 Logger 
 . 
 log 
 ( 
 'New test spreadsheet: 
 %s 
 ' 
 , 
  
 spreadsheet 
 . 
 getUrl 
 ()); 
 // 
  
 Build 
  
 data 
  
 source 
  
 spec 
  
 by 
  
 selecting 
  
 a 
  
 table 
 . 
 var 
  
 dataSourceSpec 
  
 = 
  
 SpreadsheetApp 
 . 
 newDataSourceSpec 
 () 
  
 . 
 asLooker 
 () 
  
 . 
 setInstanceUrl 
 ( 
 '<INSTANCE_URL>' 
 ) 
  
 . 
 setModelName 
 ( 
 '<MODEL_NAME>' 
 ) 
  
 . 
 setExploreName 
 ( 
 '<EXPLORE_NAME>' 
 ) 
  
 . 
 build 
 (); 
 // 
  
 Add 
  
 data 
  
 source 
  
 and 
  
 its 
  
 associated 
  
 data 
  
 source 
  
 sheet 
 . 
 var 
  
 dataSourceSheet 
  
 = 
  
 spreadsheet 
 . 
 insertDataSourceSheet 
 ( 
 dataSourceSpec 
 ); 
 var 
  
 dataSource 
  
 = 
  
 dataSourceSheet 
 . 
 getDataSource 
 (); 
 
 
Add a data source object
Once the data source is added to the spreadsheet, data source objects can be
created from the data source. In this example, a pivot table is created using DataSourcePivotTable 
on the BigQuery dataSource 
created in the code sample which adds a BigQuery datasource 
.
Unlike regular data in grid sheets that are referenced by cell index or A1 notations, data from data sources are usually referenced by column names. Therefore, most property setters on data source objects use column name as input.
  var 
  
 rootCell 
  
 = 
  
 spreadsheet 
 . 
 insertSheet 
 ( 
 'pivotTableSheet' 
 ) 
 . 
 getRange 
 ( 
 'A1' 
 ); 
 // 
  
 Add 
  
 data 
  
 source 
  
 pivot 
  
 table 
  
 and 
  
 set 
  
 data 
  
 source 
  
 specific 
  
 configurations 
 . 
 var 
  
 dataSourcePivotTable 
  
 = 
  
 rootCell 
 . 
 createDataSourcePivotTable 
 ( 
 dataSource 
 ); 
 var 
  
 rowGroup 
  
 = 
  
 dataSourcePivotTable 
 . 
 addRowGroup 
 ( 
 'season' 
 ); 
 rowGroup 
 . 
 sortDescending 
 () 
 . 
 setGroupLimit 
 ( 
 5 
 ); 
 dataSourcePivotTable 
 . 
 addColumnGroup 
 ( 
 'win_school_ncaa' 
 ); 
 dataSourcePivotTable 
 . 
 addPivotValue 
 ( 
 'win_pts' 
 , 
  
 SpreadsheetApp 
 . 
 PivotTableSummarizeFunction 
 . 
 AVERAGE 
 ); 
 dataSourcePivotTable 
 . 
 addPivotValue 
 ( 
 'game_date' 
 , 
  
 SpreadsheetApp 
 . 
 PivotTableSummarizeFunction 
 . 
 COUNTA 
 ); 
 var 
  
 filterCriteria 
  
 = 
  
 SpreadsheetApp 
 . 
 newFilterCriteria 
 () 
  
 . 
 whenTextEqualToAny 
 ([ 
 'Duke' 
 , 
  
 'North Carolina' 
 ]) 
  
 . 
 build 
 (); 
 dataSourcePivotTable 
 . 
 addFilter 
 ( 
 'win_school_ncaa' 
 , 
  
 filterCriteria 
 ); 
 // 
  
 Get 
  
 a 
  
 regular 
  
 pivot 
  
 table 
  
 instance 
  
 and 
  
 set 
  
 shared 
  
 configurations 
 . 
 var 
  
 pivotTable 
  
 = 
  
 dataSourcePivotTable 
 . 
 asPivotTable 
 (); 
 pivotTable 
 . 
 setValuesDisplayOrientation 
 ( 
 SpreadsheetApp 
 . 
 Dimension 
 . 
 ROWS 
 ); 
 
 
Refresh a data source object
You can refresh data source objects to fetch the latest data from BigQuery based on the data source specs and object configurations.
The process to refresh data is asynchronous. To refresh a data source object, use the following methods:
-  refreshData()starts the data refresh execution.
-  waitForCompletion()returns the end state once the data execution is completed. This eliminates the need to keep polling the execution status.
-  DataExecutionStatus.getErrorCode()gets the error code in case the data execution fails.
The sample below illustrates a refresh of the pivot table data:
  var 
  
 status 
  
 = 
  
 dataSourcePivotTable 
 . 
 getStatus 
 (); 
 Logger 
 . 
 log 
 ( 
 'Initial state: 
 %s 
 ' 
 , 
  
 status 
 . 
 getExecutionState 
 ()); 
 dataSourcePivotTable 
 . 
 refreshData 
 (); 
 status 
  
 = 
  
 dataSourcePivotTable 
 . 
 waitForCompletion 
 ( 
 /* 
  
 timeoutInSeconds 
 = 
  
 */ 
  
 60 
 ); 
 Logger 
 . 
 log 
 ( 
 'Ending state: 
 %s 
 ' 
 , 
  
 status 
 . 
 getExecutionState 
 ()); 
 if 
  
 ( 
 status 
 . 
 getExecutionState 
 () 
  
 == 
  
 SpreadsheetApp 
 . 
 DataExecutionState 
 . 
 ERROR 
 ) 
  
 { 
  
 Logger 
 . 
 log 
 ( 
 'Error: 
 %s 
 ( 
 %s 
 )' 
 , 
  
 status 
 . 
 getErrorCode 
 (), 
  
 status 
 . 
 getErrorMessage 
 ()); 
 } 
 
 
Use triggers with Connected Sheets
Automate your Connected Sheets data source functions with triggers and events . For example, use time-driven triggers to refresh data source objects repeatedly at a specific time, and use spreadsheet event triggers to trigger data execution on a predefined event.
The following sample adds a BigQuery data source with a query parameter and refreshes the data source sheet when the query parameter is edited.
Replace <YOUR_PROJECT_ID> 
below with a valid Google Cloud project ID.
  // 
  
 Add 
  
 data 
  
 source 
  
 with 
  
 query 
  
 parameter 
 . 
 function 
  
 addDataSource 
 () 
  
 { 
  
 SpreadsheetApp 
 . 
 enableBigQueryExecution 
 (); 
  
 var 
  
 spreadsheet 
  
 = 
  
 SpreadsheetApp 
 . 
 getActive 
 (); 
  
 // 
  
 Add 
  
 a 
  
 new 
  
 sheet 
  
 and 
  
 use 
  
 A1 
  
 cell 
  
 as 
  
 the 
  
 parameter 
  
 cell 
 . 
  
 var 
  
 parameterCell 
  
 = 
  
 spreadsheet 
 . 
 insertSheet 
 ( 
 'parameterSheet' 
 ). 
 getRange 
 ( 
 'A1' 
 ); 
 parameterCell 
 . 
 set 
 Value 
 ( 
 'Duke' 
 ); 
  
 // 
  
 Add 
  
 data 
  
 source 
  
 with 
  
 query 
  
 parameter 
 . 
  
 var 
  
 dataSourceSpec 
  
 = 
  
 SpreadsheetApp 
 . 
 newDataSourceSpec 
 () 
  
 . 
 asBigQuery 
 () 
  
 . 
 set 
 ProjectId 
 ( 
 '<YOUR_PROJECT_ID>' 
 ) 
  
 . 
 set 
 RawQuery 
 ( 
 'select * from `bigquery-public-data`.`ncaa_basketball`.`mbb_historical_tournament_games` WHERE win_school_ncaa = @SCHOOL' 
 ) 
  
 . 
 set 
 ParameterFromCell 
 ( 
 'SCHOOL' 
 , 
  
 'parameterSheet!A1' 
 ) 
  
 . 
 build 
 (); 
  
 var 
  
 dataSourceSheet 
  
 = 
  
 spreadsheet 
 . 
 insertDataSourceSheet 
 ( 
 dataSourceSpec 
 ); 
  
 dataSourceSheet 
 . 
 asSheet 
 (). 
 set 
 Name 
 ( 
 'ncaa_data' 
 ); 
 } 
 // 
  
 Function 
  
 used 
  
 to 
  
 configure 
  
 event 
  
 trigger 
  
 to 
  
 refresh 
  
 data 
  
 source 
  
 sheet 
 . 
 function 
  
 refreshOnParameterEdit 
 ( 
 e 
 ) 
  
 { 
  
 var 
  
 editedRange 
  
 = 
  
 e 
 . 
 range 
 ; 
 if 
  
 ( 
 editedRange 
 . 
 getSheet 
 (). 
 getName 
 () 
  
 != 
  
 'parameterSheet' 
 ) 
  
 { 
  
 return 
 ; 
 } 
 // 
  
 Check 
  
 that 
  
 the 
  
 edited 
  
 range 
  
 includes 
  
 A1 
 . 
 if 
  
 ( 
 editedRange 
 . 
 getRow 
 () 
 > 
 1 
  
 || 
  
 editedRange 
 . 
 getColumn 
 () 
 > 
 1 
 ) 
  
 { 
  
 return 
 ; 
 } 
  
 var 
  
 spreadsheet 
  
 = 
  
 e 
 . 
 source 
 ; 
  
 SpreadsheetApp 
 . 
 enableBigQueryExecution 
 (); 
  
 spreadsheet 
 . 
 getSheetByName 
 ( 
 'ncaa_data' 
 ). 
 asDataSourceSheet 
 (). 
 refreshData 
 (); 
 } 
 
 
In the above sample, the addDataSource() 
function adds a data source to the
spreadsheet. After you execute addDataSource() 
, create an event trigger in
the Apps Script editor. To learn how to create an event trigger, see Installable triggers 
.
Select the following options for your trigger:
- Event source: From spreadsheet
- Event type: On edit
-  Function to run:  refreshOnParameterEdit
Once the trigger is created, the data source sheet refreshes automatically every time the parameter cell is edited.
Troubleshoot
| Error message | Resolution | 
|---|---|
| Use enableBigQuery()to enable data executions for BIGQUERY data sources. | This error indicates that SpreadsheetApp.enableBigQueryExecution()is not called before fetching BigQuery data.Call SpreadsheetApp.enableBigQueryExecution()in functions that use methods for BigQuery execution.Such as, refreshData()on data source objects,Spreadsheet.insertDataSourceTable(), andDataSource.updateSpec().These methods require an additional bigquery.readonly OAuth scope to work. | 
| Not permitted to act on data sources. Please contact your administrator to enable the feature. | This error indicates that the account doesn’t have Connected Sheets enabled. Connected Sheets is only available to Google Workspace users with certain subscriptions. Contact your administrator to enable the feature. | 

