本を読めば『道は開ける』

本を読めば『道は開ける』

7.菊川怜が積分を解いていたが


ゲストは菊川怜。

東大工学部卒業ということで、その番組では
数三の問題を菊川怜に解かせていた。

問題は

∫(x^2)×(log x )dx

で区間 1から e (自然対数。約2.7 無理数)までの
定積分を求めよ
(「x^2」は x の2乗の意味です。)

というもの。

菊川怜も言っていたが、この問題は

関数 Y = (x^2)×(log x) と x = 1 、 x = e とY軸
で囲まれる部分の面積を求めよ

というのと同値。

彼女はスラスラと解いていた。

ちなみに答えは

2/9× e^3 + 1/9

である。

古館伊知郎が
「これは暗号なんですか?」とか

渡辺真理奈が
「酸素が薄くなってきたかのように、苦しくなってきた」

と言うほど、難しい問題ではない。

教科書に出てくる標準レベルの問題で
部分積分法を適用する典型的な問題である。

だが、私はこれを見て

「菊川怜は、本当に東大の理1(理2?)に受かったんだなあ」

と(バカみたいだが)しみじみと思った。
(慶応の医学部も現役で受かったんだってさ)

頭がいい、とかではなくて

東大に入るために、基礎的な数学の演習をしっかりやったんだなあ

ということが理解できたからである。

彼女は20代の中頃であると思うが、彼女の仕事は芸能界のお仕事。間違っても積分など出てこない。

いくら理系の学部だからといって、あの手の積分の計算を
在学中にだってやることは滅多にないであろう。

ということは、もう7,8年もああゆう問題はやっていないと思うのだけれど、スラスラと部分積分法が出て来るんだからねえ。

と妙な関心をした次第。

しかし、世間に対する数学のイメージもあらためて知った。

古館伊知郎も渡辺真理奈も、大袈裟すぎるなあ。
そんな驚くほどのことでもないんだからさあ。

でも、民法テレビで数式を見るというのも新鮮な感じだった。

もっとTVメディアに数式を!


© Rakuten Group, Inc.
X
Mobilize your Site
スマートフォン版を閲覧 | PC版を閲覧
Share by: