Reference documentation and code samples for the Google Cloud Ai Platform V1 Client class SmoothGradConfig.
Config for SmoothGrad approximation of gradients.
When enabled, the gradients are approximated by averaging the gradients from
noisy samples in the vicinity of the inputs. Adding noise can help improve
the computed gradients. Refer to this paper for more details:https://arxiv.org/pdf/1706.03825.pdf
Generated from protobuf messagegoogle.cloud.aiplatform.v1.SmoothGradConfig
Namespace
Google \ Cloud \ AIPlatform \ V1
Methods
__construct
Constructor.
Parameters
Name
Description
data
array
Optional. Data for populating the Message object.
↳ noise_sigma
float
This is a single float value and will be used to add noise to all the features. Use this field when all features are normalized to have the same distribution: scale to range [0, 1], [-1, 1] or z-scoring, where features are normalized to have 0-mean and 1-variance. Learn more aboutnormalization. For best results the recommended value is about 10% - 20% of the standard deviation of the input feature. Refer to section 3.2 of the SmoothGrad paper:https://arxiv.org/pdf/1706.03825.pdf. Defaults to 0.1. If the distribution is different per feature, setfeature_noise_sigmainstead for each feature.
This is similar tonoise_sigma, but provides additional flexibility. A separate noise sigma can be provided for each feature, which is useful if their distributions are different. No noise is added to features that are not set. If this field is unset,noise_sigmawill be used for all features.
↳ noisy_sample_count
int
The number of gradient samples to use for approximation. The higher this number, the more accurate the gradient is, but the runtime complexity increases by this factor as well. Valid range of its value is [1, 50]. Defaults to 3.
getNoiseSigma
This is a single float value and will be used to add noise to all the
features. Use this field when all features are normalized to have the
same distribution: scale to range [0, 1], [-1, 1] or z-scoring, where
features are normalized to have 0-mean and 1-variance. Learn more aboutnormalization.
For best results the recommended value is about 10% - 20% of the standard
deviation of the input feature. Refer to section 3.2 of the SmoothGrad
paper:https://arxiv.org/pdf/1706.03825.pdf. Defaults to 0.1.
If the distribution is different per feature, setfeature_noise_sigmainstead for each feature.
Returns
Type
Description
float
hasNoiseSigma
setNoiseSigma
This is a single float value and will be used to add noise to all the
features. Use this field when all features are normalized to have the
same distribution: scale to range [0, 1], [-1, 1] or z-scoring, where
features are normalized to have 0-mean and 1-variance. Learn more aboutnormalization.
For best results the recommended value is about 10% - 20% of the standard
deviation of the input feature. Refer to section 3.2 of the SmoothGrad
paper:https://arxiv.org/pdf/1706.03825.pdf. Defaults to 0.1.
If the distribution is different per feature, setfeature_noise_sigmainstead for each feature.
Parameter
Name
Description
var
float
Returns
Type
Description
$this
getFeatureNoiseSigma
This is similar tonoise_sigma,
but provides additional flexibility. A separate noise sigma can be
provided for each feature, which is useful if their distributions are
different. No noise is added to features that are not set. If this field
is unset,noise_sigmawill be used for all features.
This is similar tonoise_sigma,
but provides additional flexibility. A separate noise sigma can be
provided for each feature, which is useful if their distributions are
different. No noise is added to features that are not set. If this field
is unset,noise_sigmawill be used for all features.
The number of gradient samples to use for
approximation. The higher this number, the more accurate the gradient
is, but the runtime complexity increases by this factor as well.
Valid range of its value is [1, 50]. Defaults to 3.
Returns
Type
Description
int
setNoisySampleCount
The number of gradient samples to use for
approximation. The higher this number, the more accurate the gradient
is, but the runtime complexity increases by this factor as well.
Valid range of its value is [1, 50]. Defaults to 3.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-09-04 UTC."],[],[],null,["# Google Cloud Ai Platform V1 Client - Class SmoothGradConfig (1.35.0)\n\nVersion latestkeyboard_arrow_down\n\n- [1.35.0 (latest)](/php/docs/reference/cloud-ai-platform/latest/V1.SmoothGradConfig)\n- [1.34.0](/php/docs/reference/cloud-ai-platform/1.34.0/V1.SmoothGradConfig)\n- [1.33.0](/php/docs/reference/cloud-ai-platform/1.33.0/V1.SmoothGradConfig)\n- [1.32.1](/php/docs/reference/cloud-ai-platform/1.32.1/V1.SmoothGradConfig)\n- [1.31.0](/php/docs/reference/cloud-ai-platform/1.31.0/V1.SmoothGradConfig)\n- [1.30.0](/php/docs/reference/cloud-ai-platform/1.30.0/V1.SmoothGradConfig)\n- [1.26.0](/php/docs/reference/cloud-ai-platform/1.26.0/V1.SmoothGradConfig)\n- [1.23.0](/php/docs/reference/cloud-ai-platform/1.23.0/V1.SmoothGradConfig)\n- [1.22.0](/php/docs/reference/cloud-ai-platform/1.22.0/V1.SmoothGradConfig)\n- [1.21.0](/php/docs/reference/cloud-ai-platform/1.21.0/V1.SmoothGradConfig)\n- [1.20.0](/php/docs/reference/cloud-ai-platform/1.20.0/V1.SmoothGradConfig)\n- [1.19.0](/php/docs/reference/cloud-ai-platform/1.19.0/V1.SmoothGradConfig)\n- [1.18.0](/php/docs/reference/cloud-ai-platform/1.18.0/V1.SmoothGradConfig)\n- [1.17.0](/php/docs/reference/cloud-ai-platform/1.17.0/V1.SmoothGradConfig)\n- [1.16.0](/php/docs/reference/cloud-ai-platform/1.16.0/V1.SmoothGradConfig)\n- [1.15.0](/php/docs/reference/cloud-ai-platform/1.15.0/V1.SmoothGradConfig)\n- [1.14.0](/php/docs/reference/cloud-ai-platform/1.14.0/V1.SmoothGradConfig)\n- [1.13.1](/php/docs/reference/cloud-ai-platform/1.13.1/V1.SmoothGradConfig)\n- [1.12.0](/php/docs/reference/cloud-ai-platform/1.12.0/V1.SmoothGradConfig)\n- [1.11.0](/php/docs/reference/cloud-ai-platform/1.11.0/V1.SmoothGradConfig)\n- [1.10.0](/php/docs/reference/cloud-ai-platform/1.10.0/V1.SmoothGradConfig)\n- [1.9.0](/php/docs/reference/cloud-ai-platform/1.9.0/V1.SmoothGradConfig)\n- [1.8.0](/php/docs/reference/cloud-ai-platform/1.8.0/V1.SmoothGradConfig)\n- [1.7.0](/php/docs/reference/cloud-ai-platform/1.7.0/V1.SmoothGradConfig)\n- [1.6.0](/php/docs/reference/cloud-ai-platform/1.6.0/V1.SmoothGradConfig)\n- [1.5.0](/php/docs/reference/cloud-ai-platform/1.5.0/V1.SmoothGradConfig)\n- [1.4.0](/php/docs/reference/cloud-ai-platform/1.4.0/V1.SmoothGradConfig)\n- [1.3.0](/php/docs/reference/cloud-ai-platform/1.3.0/V1.SmoothGradConfig)\n- [1.2.0](/php/docs/reference/cloud-ai-platform/1.2.0/V1.SmoothGradConfig)\n- [1.1.0](/php/docs/reference/cloud-ai-platform/1.1.0/V1.SmoothGradConfig)\n- [1.0.0](/php/docs/reference/cloud-ai-platform/1.0.0/V1.SmoothGradConfig)\n- [0.39.0](/php/docs/reference/cloud-ai-platform/0.39.0/V1.SmoothGradConfig)\n- [0.38.0](/php/docs/reference/cloud-ai-platform/0.38.0/V1.SmoothGradConfig)\n- [0.37.1](/php/docs/reference/cloud-ai-platform/0.37.1/V1.SmoothGradConfig)\n- [0.32.0](/php/docs/reference/cloud-ai-platform/0.32.0/V1.SmoothGradConfig)\n- [0.31.0](/php/docs/reference/cloud-ai-platform/0.31.0/V1.SmoothGradConfig)\n- [0.30.0](/php/docs/reference/cloud-ai-platform/0.30.0/V1.SmoothGradConfig)\n- [0.29.0](/php/docs/reference/cloud-ai-platform/0.29.0/V1.SmoothGradConfig)\n- [0.28.0](/php/docs/reference/cloud-ai-platform/0.28.0/V1.SmoothGradConfig)\n- [0.27.0](/php/docs/reference/cloud-ai-platform/0.27.0/V1.SmoothGradConfig)\n- [0.26.2](/php/docs/reference/cloud-ai-platform/0.26.2/V1.SmoothGradConfig)\n- [0.25.0](/php/docs/reference/cloud-ai-platform/0.25.0/V1.SmoothGradConfig)\n- [0.24.0](/php/docs/reference/cloud-ai-platform/0.24.0/V1.SmoothGradConfig)\n- [0.23.0](/php/docs/reference/cloud-ai-platform/0.23.0/V1.SmoothGradConfig)\n- [0.22.0](/php/docs/reference/cloud-ai-platform/0.22.0/V1.SmoothGradConfig)\n- [0.21.0](/php/docs/reference/cloud-ai-platform/0.21.0/V1.SmoothGradConfig)\n- [0.20.0](/php/docs/reference/cloud-ai-platform/0.20.0/V1.SmoothGradConfig)\n- [0.19.0](/php/docs/reference/cloud-ai-platform/0.19.0/V1.SmoothGradConfig)\n- [0.18.0](/php/docs/reference/cloud-ai-platform/0.18.0/V1.SmoothGradConfig)\n- [0.17.0](/php/docs/reference/cloud-ai-platform/0.17.0/V1.SmoothGradConfig)\n- [0.16.0](/php/docs/reference/cloud-ai-platform/0.16.0/V1.SmoothGradConfig)\n- [0.15.0](/php/docs/reference/cloud-ai-platform/0.15.0/V1.SmoothGradConfig)\n- [0.13.0](/php/docs/reference/cloud-ai-platform/0.13.0/V1.SmoothGradConfig)\n- [0.12.0](/php/docs/reference/cloud-ai-platform/0.12.0/V1.SmoothGradConfig)\n- [0.11.1](/php/docs/reference/cloud-ai-platform/0.11.1/V1.SmoothGradConfig)\n- [0.10.0](/php/docs/reference/cloud-ai-platform/0.10.0/V1.SmoothGradConfig) \nReference documentation and code samples for the Google Cloud Ai Platform V1 Client class SmoothGradConfig.\n\nConfig for SmoothGrad approximation of gradients.\n\nWhen enabled, the gradients are approximated by averaging the gradients from\nnoisy samples in the vicinity of the inputs. Adding noise can help improve\nthe computed gradients. Refer to this paper for more details:\n\u003chttps://arxiv.org/pdf/1706.03825.pdf\u003e\n\nGenerated from protobuf message `google.cloud.aiplatform.v1.SmoothGradConfig`\n\nNamespace\n---------\n\nGoogle \\\\ Cloud \\\\ AIPlatform \\\\ V1\n\nMethods\n-------\n\n### __construct\n\nConstructor.\n\n### getNoiseSigma\n\nThis is a single float value and will be used to add noise to all the\nfeatures. Use this field when all features are normalized to have the\nsame distribution: scale to range \\[0, 1\\], \\[-1, 1\\] or z-scoring, where\nfeatures are normalized to have 0-mean and 1-variance. Learn more about\n[normalization](https://developers.google.com/machine-learning/data-prep/transform/normalization).\n\nFor best results the recommended value is about 10% - 20% of the standard\ndeviation of the input feature. Refer to section 3.2 of the SmoothGrad\npaper: \u003chttps://arxiv.org/pdf/1706.03825.pdf\u003e. Defaults to 0.1.\nIf the distribution is different per feature, set\n[feature_noise_sigma](/php/docs/reference/cloud-ai-platform/latest/V1.SmoothGradConfig#_Google_Cloud_AIPlatform_V1_SmoothGradConfig__getFeatureNoiseSigma__)\ninstead for each feature.\n\n### hasNoiseSigma\n\n### setNoiseSigma\n\nThis is a single float value and will be used to add noise to all the\nfeatures. Use this field when all features are normalized to have the\nsame distribution: scale to range \\[0, 1\\], \\[-1, 1\\] or z-scoring, where\nfeatures are normalized to have 0-mean and 1-variance. Learn more about\n[normalization](https://developers.google.com/machine-learning/data-prep/transform/normalization).\n\nFor best results the recommended value is about 10% - 20% of the standard\ndeviation of the input feature. Refer to section 3.2 of the SmoothGrad\npaper: \u003chttps://arxiv.org/pdf/1706.03825.pdf\u003e. Defaults to 0.1.\nIf the distribution is different per feature, set\n[feature_noise_sigma](/php/docs/reference/cloud-ai-platform/latest/V1.SmoothGradConfig#_Google_Cloud_AIPlatform_V1_SmoothGradConfig__getFeatureNoiseSigma__)\ninstead for each feature.\n\n### getFeatureNoiseSigma\n\nThis is similar to\n[noise_sigma](/php/docs/reference/cloud-ai-platform/latest/V1.SmoothGradConfig#_Google_Cloud_AIPlatform_V1_SmoothGradConfig__getNoiseSigma__),\nbut provides additional flexibility. A separate noise sigma can be\nprovided for each feature, which is useful if their distributions are\ndifferent. No noise is added to features that are not set. If this field\nis unset,\n[noise_sigma](/php/docs/reference/cloud-ai-platform/latest/V1.SmoothGradConfig#_Google_Cloud_AIPlatform_V1_SmoothGradConfig__getNoiseSigma__)\nwill be used for all features.\n\n### hasFeatureNoiseSigma\n\n### setFeatureNoiseSigma\n\nThis is similar to\n[noise_sigma](/php/docs/reference/cloud-ai-platform/latest/V1.SmoothGradConfig#_Google_Cloud_AIPlatform_V1_SmoothGradConfig__getNoiseSigma__),\nbut provides additional flexibility. A separate noise sigma can be\nprovided for each feature, which is useful if their distributions are\ndifferent. No noise is added to features that are not set. If this field\nis unset,\n[noise_sigma](/php/docs/reference/cloud-ai-platform/latest/V1.SmoothGradConfig#_Google_Cloud_AIPlatform_V1_SmoothGradConfig__getNoiseSigma__)\nwill be used for all features.\n\n### getNoisySampleCount\n\nThe number of gradient samples to use for\napproximation. The higher this number, the more accurate the gradient\nis, but the runtime complexity increases by this factor as well.\n\nValid range of its value is \\[1, 50\\]. Defaults to 3.\n\n### setNoisySampleCount\n\nThe number of gradient samples to use for\napproximation. The higher this number, the more accurate the gradient\nis, but the runtime complexity increases by this factor as well.\n\nValid range of its value is \\[1, 50\\]. Defaults to 3.\n\n### getGradientNoiseSigma"]]