Document AI client libraries

This page shows how to get started with the Cloud Client Libraries for the Document AI API. Client libraries make it easier to access Google Cloud APIs from a supported language. Although you can use Google Cloud APIs directly by making raw requests to the server, client libraries provide simplifications that significantly reduce the amount of code you need to write.

Read more about the Cloud Client Libraries and the older Google API Client Libraries in Client libraries explained .

Install the client library

C++

See Setting up a C++ development environment for details about this client library's requirements and install dependencies.

C#

Install-Package Google.Cloud.DocumentAI.V1 -Pre

For more information, see Setting Up a C# Development Environment .

Go

go get cloud.google.com/go/documentai

For more information, see Setting Up a Go Development Environment .

Java

If you are using Maven , add the following to your pom.xml file. For more information about BOMs, see The Google Cloud Platform Libraries BOM .

 < dependencyManagement 
>  
< dependencies 
>  
< dependency 
>  
< groupId>com 
 . 
 google 
 . 
 cloud 
< / 
 groupId 
>  
< artifactId>libraries 
 - 
 bom 
< / 
 artifactId 
>  
< version>26 
 . 
 66 
 . 
 0 
< / 
 version 
>  
< type>pom 
< / 
 type 
>  
< scope>import 
< / 
 scope 
>  
< /dependency 
> </ 
 dependencies 
>
< /dependencyManagement 
>

< dependencies 
> <dependency> 
 <groupId>com.google.cloud</ 
 groupId 
>  
< artifactId>google 
 - 
 cloud 
 - 
 document 
 - 
 ai 
< / 
 artifactId 
>  
< /dependency 
>
< / 
 dependencies 
> 

If you are using Gradle , add the following to your dependencies:

  implementation 
  
 'com.google.cloud:google-cloud-document-ai:2.76.0' 
 

If you are using sbt , add the following to your dependencies:

  libraryDependencies 
  
 += 
  
 "com.google.cloud" 
  
 % 
  
 "google-cloud-document-ai" 
  
 % 
  
 "2.76.0" 
 

If you're using Visual Studio Code, IntelliJ, or Eclipse, you can add client libraries to your project using the following IDE plugins:

The plugins provide additional functionality, such as key management for service accounts. Refer to each plugin's documentation for details.

For more information, see Setting Up a Java Development Environment .

Node.js

npm install @google-cloud/documentai

For more information, see Setting Up a Node.js Development Environment .

PHP

composer require google/cloud-document-ai

For more information, see Using PHP on Google Cloud .

Python

pip install --upgrade google-cloud-documentai

For more information, see Setting Up a Python Development Environment .

Ruby

gem install google-cloud-document_ai

For more information, see Setting Up a Ruby Development Environment .

Set up authentication

To authenticate calls to Google Cloud APIs, client libraries support Application Default Credentials (ADC) ; the libraries look for credentials in a set of defined locations and use those credentials to authenticate requests to the API. With ADC, you can make credentials available to your application in a variety of environments, such as local development or production, without needing to modify your application code.

For production environments, the way you set up ADC depends on the service and context. For more information, see Set up Application Default Credentials .

For a local development environment, you can set up ADC with the credentials that are associated with your Google Account:

  1. Install the Google Cloud CLI. After installation, initialize the Google Cloud CLI by running the following command:

    gcloud  
    init

    If you're using an external identity provider (IdP), you must first sign in to the gcloud CLI with your federated identity .

  2. If you're using a local shell, then create local authentication credentials for your user account:

    gcloud  
    auth  
    application-default  
    login

    You don't need to do this if you're using Cloud Shell.

    If an authentication error is returned, and you are using an external identity provider (IdP), confirm that you have signed in to the gcloud CLI with your federated identity .

    A sign-in screen appears. After you sign in, your credentials are stored in the local credential file used by ADC .

Use the client library

The following example shows how to use the client library.

C++

  #include 
  
 "google/cloud/documentai/v1/document_processor_client.h" 
 #include 
  
 "google/cloud/location.h" 
 #include <fstream> 
 #include <iostream> 
 #include <string> 
 int 
  
 main 
 ( 
 int 
  
 argc 
 , 
  
 char 
 * 
  
 argv 
 []) 
  
 try 
  
 { 
  
 if 
  
 ( 
 argc 
  
 != 
  
 5 
 ) 
  
 { 
  
 std 
 :: 
 cerr 
 << 
 "Usage: " 
 << 
 argv 
 [ 
 0 
 ] 
 << 
 " project-id location-id processor-id filename (PDF only) 
 \n 
 " 
 ; 
  
 return 
  
 1 
 ; 
  
 } 
  
 std 
 :: 
 string 
  
 const 
  
 location_id 
  
 = 
  
 argv 
 [ 
 2 
 ]; 
  
 if 
  
 ( 
 location_id 
  
 != 
  
 "us" 
 && 
 location_id 
  
 != 
  
 "eu" 
 ) 
  
 { 
  
 std 
 :: 
 cerr 
 << 
 "location-id must be either 'us' or 'eu' 
 \n 
 " 
 ; 
  
 return 
  
 1 
 ; 
  
 } 
  
 auto 
  
 const 
  
 location 
  
 = 
  
 google 
 :: 
 cloud 
 :: 
 Location 
 ( 
 argv 
 [ 
 1 
 ], 
  
 location_id 
 ); 
  
 namespace 
  
 documentai 
  
 = 
  
 :: 
 google 
 :: 
 cloud 
 :: 
 documentai_v1 
 ; 
  
 auto 
  
 client 
  
 = 
  
 documentai 
 :: 
 DocumentProcessorServiceClient 
 ( 
  
 documentai 
 :: 
 MakeDocumentProcessorServiceConnection 
 ( 
  
 location 
 . 
 location_id 
 ())); 
  
 google 
 :: 
 cloud 
 :: 
 documentai 
 :: 
 v1 
 :: 
 ProcessRequest 
  
 req 
 ; 
  
 req 
 . 
 set_name 
 ( 
 location 
 . 
 FullName 
 () 
  
 + 
  
 "/processors/" 
  
 + 
  
 argv 
 [ 
 3 
 ]); 
  
 req 
 . 
 set_skip_human_review 
 ( 
 true 
 ); 
  
 auto 
&  
 doc 
  
 = 
  
 * 
 req 
 . 
 mutable_raw_document 
 (); 
  
 doc 
 . 
 set_mime_type 
 ( 
 "application/pdf" 
 ); 
  
 std 
 :: 
 ifstream 
  
 is 
 ( 
 argv 
 [ 
 4 
 ]); 
  
 doc 
 . 
 set_content 
 ( 
 std 
 :: 
 string 
 { 
 std 
 :: 
 istreambuf_iterator<char> 
 ( 
 is 
 ), 
  
 {}}); 
  
 auto 
  
 resp 
  
 = 
  
 client 
 . 
 ProcessDocument 
 ( 
 std 
 :: 
 move 
 ( 
 req 
 )); 
  
 if 
  
 ( 
 ! 
 resp 
 ) 
  
 throw 
  
 std 
 :: 
 move 
 ( 
 resp 
 ). 
 status 
 (); 
  
 std 
 :: 
 cout 
 << 
 resp 
 - 
> document 
 (). 
 text 
 () 
 << 
 " 
 \n 
 " 
 ; 
  
 return 
  
 0 
 ; 
 } 
  
 catch 
  
 ( 
 google 
 :: 
 cloud 
 :: 
 Status 
  
 const 
&  
 status 
 ) 
  
 { 
  
 std 
 :: 
 cerr 
 << 
 "google::cloud::Status thrown: " 
 << 
 status 
 << 
 " 
 \n 
 " 
 ; 
  
 return 
  
 1 
 ; 
 } 
 

C#

  using 
  
  Google.Cloud.DocumentAI.V1 
 
 ; 
 using 
  
  Google.Protobuf 
 
 ; 
 using 
  
 System 
 ; 
 using 
  
 System.IO 
 ; 
 public 
  
 class 
  
 QuickstartSample 
 { 
  
 public 
  
 Document 
  
 Quickstart 
 ( 
  
 string 
  
 projectId 
  
 = 
  
 "your-project-id" 
 , 
  
 string 
  
 locationId 
  
 = 
  
 "your-processor-location" 
 , 
  
 string 
  
 processorId 
  
 = 
  
 "your-processor-id" 
 , 
  
 string 
  
 localPath 
  
 = 
  
 "my-local-path/my-file-name" 
 , 
  
 string 
  
 mimeType 
  
 = 
  
 "application/pdf" 
  
 ) 
  
 { 
  
 // Create client 
  
 var 
  
 client 
  
 = 
  
 new 
  
  DocumentProcessorServiceClientBuilder 
 
  
 { 
  
 Endpoint 
  
 = 
  
 $"{locationId}-documentai.googleapis.com" 
  
 }. 
  Build 
 
 (); 
  
 // Read in local file 
  
 using 
  
 var 
  
 fileStream 
  
 = 
  
 File 
 . 
 OpenRead 
 ( 
 localPath 
 ); 
  
 var 
  
 rawDocument 
  
 = 
  
 new 
  
  RawDocument 
 
  
 { 
  
 Content 
  
 = 
  
  ByteString 
 
 . 
  FromStream 
 
 ( 
 fileStream 
 ), 
  
 MimeType 
  
 = 
  
 mimeType 
  
 }; 
  
 // Initialize request argument(s) 
  
 var 
  
 request 
  
 = 
  
 new 
  
  ProcessRequest 
 
  
 { 
  
 Name 
  
 = 
  
  ProcessorName 
 
 . 
  FromProjectLocationProcessor 
 
 ( 
 projectId 
 , 
  
 locationId 
 , 
  
 processorId 
 ). 
 ToString 
 (), 
  
 RawDocument 
  
 = 
  
 rawDocument 
  
 }; 
  
 // Make the request 
  
 var 
  
 response 
  
 = 
  
 client 
 . 
 ProcessDocument 
 ( 
 request 
 ); 
  
 var 
  
 document 
  
 = 
  
 response 
 . 
  Document 
 
 ; 
  
 Console 
 . 
 WriteLine 
 ( 
 document 
 . 
 Text 
 ); 
  
 return 
  
 document 
 ; 
  
 } 
 } 
 

Go

  import 
  
 ( 
  
 "context" 
  
 "flag" 
  
 "fmt" 
  
 "os" 
  
 documentai 
  
 "cloud.google.com/go/documentai/apiv1" 
  
 "cloud.google.com/go/documentai/apiv1/documentaipb" 
  
 "google.golang.org/api/option" 
 ) 
 func 
  
 main 
 () 
  
 { 
  
 projectID 
  
 := 
  
 flag 
 . 
 String 
 ( 
 "project_id" 
 , 
  
 "PROJECT_ID" 
 , 
  
 "Cloud Project ID" 
 ) 
  
 location 
  
 := 
  
 flag 
 . 
 String 
 ( 
 "location" 
 , 
  
 "us" 
 , 
  
 "The Processor location" 
 ) 
  
 // Create a Processor before running sample 
  
 processorID 
  
 := 
  
 flag 
 . 
 String 
 ( 
 "processor_id" 
 , 
  
 "aaaaaaaa" 
 , 
  
 "The Processor ID" 
 ) 
  
 filePath 
  
 := 
  
 flag 
 . 
 String 
 ( 
 "file_path" 
 , 
  
 "invoice.pdf" 
 , 
  
 "The path to the file to parse" 
 ) 
  
 mimeType 
  
 := 
  
 flag 
 . 
 String 
 ( 
 "mime_type" 
 , 
  
 "application/pdf" 
 , 
  
 "The mimeType of the file" 
 ) 
  
 flag 
 . 
 Parse 
 () 
  
 ctx 
  
 := 
  
 context 
 . 
 Background 
 () 
  
 endpoint 
  
 := 
  
 fmt 
 . 
 Sprintf 
 ( 
 "%s-documentai.googleapis.com:443" 
 , 
  
 * 
 location 
 ) 
  
 client 
 , 
  
 err 
  
 := 
  
 documentai 
 . 
  NewDocumentProcessorClient 
 
 ( 
 ctx 
 , 
  
 option 
 . 
 WithEndpoint 
 ( 
 endpoint 
 )) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 fmt 
 . 
 Println 
 ( 
 fmt 
 . 
 Errorf 
 ( 
 "error creating Document AI client: %w" 
 , 
  
 err 
 )) 
  
 } 
  
 defer 
  
 client 
 . 
  Close 
 
 () 
  
 // Open local file. 
  
 data 
 , 
  
 err 
  
 := 
  
 os 
 . 
 ReadFile 
 ( 
 * 
 filePath 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 fmt 
 . 
 Println 
 ( 
 fmt 
 . 
 Errorf 
 ( 
 "os.ReadFile: %w" 
 , 
  
 err 
 )) 
  
 } 
  
 req 
  
 := 
  
& documentaipb 
 . 
 ProcessRequest 
 { 
  
 Name 
 : 
  
 fmt 
 . 
 Sprintf 
 ( 
 "projects/%s/locations/%s/processors/%s" 
 , 
  
 * 
 projectID 
 , 
  
 * 
 location 
 , 
  
 * 
 processorID 
 ), 
  
 Source 
 : 
  
& documentaipb 
 . 
 ProcessRequest_RawDocument 
 { 
  
 RawDocument 
 : 
  
& documentaipb 
 . 
 RawDocument 
 { 
  
 Content 
 : 
  
 data 
 , 
  
 MimeType 
 : 
  
 * 
 mimeType 
 , 
  
 }, 
  
 }, 
  
 } 
  
 resp 
 , 
  
 err 
  
 := 
  
 client 
 . 
 ProcessDocument 
 ( 
 ctx 
 , 
  
 req 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 fmt 
 . 
 Println 
 ( 
 fmt 
 . 
 Errorf 
 ( 
 "processDocument: %w" 
 , 
  
 err 
 )) 
  
 } 
  
 // Handle the results. 
  
 document 
  
 := 
  
 resp 
 . 
 GetDocument 
 () 
  
 fmt 
 . 
 Printf 
 ( 
 "Document Text: %s" 
 , 
  
 document 
 . 
 GetText 
 ()) 
 } 
 

Java

  import 
  
 com.google.cloud.documentai.v1. Document 
 
 ; 
 import 
  
 com.google.cloud.documentai.v1. DocumentProcessorServiceClient 
 
 ; 
 import 
  
 com.google.cloud.documentai.v1. DocumentProcessorServiceSettings 
 
 ; 
 import 
  
 com.google.cloud.documentai.v1. ProcessRequest 
 
 ; 
 import 
  
 com.google.cloud.documentai.v1. ProcessResponse 
 
 ; 
 import 
  
 com.google.cloud.documentai.v1. RawDocument 
 
 ; 
 import 
  
 com.google.protobuf. ByteString 
 
 ; 
 import 
  
 java.io.IOException 
 ; 
 import 
  
 java.nio.file.Files 
 ; 
 import 
  
 java.nio.file.Paths 
 ; 
 import 
  
 java.util.List 
 ; 
 import 
  
 java.util.concurrent.ExecutionException 
 ; 
 import 
  
 java.util.concurrent.TimeoutException 
 ; 
 public 
  
 class 
 QuickStart 
  
 { 
  
 public 
  
 static 
  
 void 
  
 main 
 ( 
 String 
 [] 
  
 args 
 ) 
  
 throws 
  
 IOException 
 , 
  
 InterruptedException 
 , 
  
 ExecutionException 
 , 
  
 TimeoutException 
  
 { 
  
 // TODO(developer): Replace these variables before running the sample. 
  
 String 
  
 projectId 
  
 = 
  
 "your-project-id" 
 ; 
  
 String 
  
 location 
  
 = 
  
 "your-project-location" 
 ; 
  
 // Format is "us" or "eu". 
  
 String 
  
 processorId 
  
 = 
  
 "your-processor-id" 
 ; 
  
 String 
  
 filePath 
  
 = 
  
 "path/to/input/file.pdf" 
 ; 
  
 quickStart 
 ( 
 projectId 
 , 
  
 location 
 , 
  
 processorId 
 , 
  
 filePath 
 ); 
  
 } 
  
 public 
  
 static 
  
 void 
  
 quickStart 
 ( 
  
 String 
  
 projectId 
 , 
  
 String 
  
 location 
 , 
  
 String 
  
 processorId 
 , 
  
 String 
  
 filePath 
 ) 
  
 throws 
  
 IOException 
 , 
  
 InterruptedException 
 , 
  
 ExecutionException 
 , 
  
 TimeoutException 
  
 { 
  
 // Initialize client that will be used to send requests. This client only needs 
  
 // to be created 
  
 // once, and can be reused for multiple requests. After completing all of your 
  
 // requests, call 
  
 // the "close" method on the client to safely clean up any remaining background 
  
 // resources. 
  
 String 
  
 endpoint 
  
 = 
  
 String 
 . 
 format 
 ( 
 "%s-documentai.googleapis.com:443" 
 , 
  
 location 
 ); 
  
  DocumentProcessorServiceSettings 
 
  
 settings 
  
 = 
  
  DocumentProcessorServiceSettings 
 
 . 
 newBuilder 
 (). 
 setEndpoint 
 ( 
 endpoint 
 ). 
 build 
 (); 
  
 try 
  
 ( 
  DocumentProcessorServiceClient 
 
  
 client 
  
 = 
  
  DocumentProcessorServiceClient 
 
 . 
 create 
 ( 
 settings 
 )) 
  
 { 
  
 // The full resource name of the processor, e.g.: 
  
 // projects/project-id/locations/location/processor/processor-id 
  
 // You must create new processors in the Cloud Console first 
  
 String 
  
 name 
  
 = 
  
 String 
 . 
 format 
 ( 
 "projects/%s/locations/%s/processors/%s" 
 , 
  
 projectId 
 , 
  
 location 
 , 
  
 processorId 
 ); 
  
 // Read the file. 
  
 byte 
 [] 
  
 imageFileData 
  
 = 
  
 Files 
 . 
 readAllBytes 
 ( 
 Paths 
 . 
 get 
 ( 
 filePath 
 )); 
  
 // Convert the image data to a Buffer and base64 encode it. 
  
  ByteString 
 
  
 content 
  
 = 
  
  ByteString 
 
 . 
  copyFrom 
 
 ( 
 imageFileData 
 ); 
  
  RawDocument 
 
  
 document 
  
 = 
  
  RawDocument 
 
 . 
 newBuilder 
 (). 
 setContent 
 ( 
 content 
 ). 
 setMimeType 
 ( 
 "application/pdf" 
 ). 
 build 
 (); 
  
 // Configure the process request. 
  
  ProcessRequest 
 
  
 request 
  
 = 
  
  ProcessRequest 
 
 . 
 newBuilder 
 (). 
 setName 
 ( 
 name 
 ). 
  setRawDocument 
 
 ( 
 document 
 ). 
 build 
 (); 
  
 // Recognizes text entities in the PDF document 
  
  ProcessResponse 
 
  
 result 
  
 = 
  
 client 
 . 
 processDocument 
 ( 
 request 
 ); 
  
  Document 
 
  
 documentResponse 
  
 = 
  
 result 
 . 
  getDocument 
 
 (); 
  
 // Get all of the document text as one big string 
  
 String 
  
 text 
  
 = 
  
 documentResponse 
 . 
  getText 
 
 (); 
  
 // Read the text recognition output from the processor 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "The document contains the following paragraphs:" 
 ); 
  
  Document 
 
 . 
  Page 
 
  
 firstPage 
  
 = 
  
 documentResponse 
 . 
  getPages 
 
 ( 
 0 
 ); 
  
 List<Document 
 . 
  Page 
 
 . 
  Paragraph 
 
>  
 paragraphs 
  
 = 
  
 firstPage 
 . 
 getParagraphsList 
 (); 
  
 for 
  
 ( 
  Document 
 
 . 
  Page 
 
 . 
  Paragraph 
 
  
 paragraph 
  
 : 
  
 paragraphs 
 ) 
  
 { 
  
 String 
  
 paragraphText 
  
 = 
  
 getText 
 ( 
 paragraph 
 . 
 getLayout 
 (). 
 getTextAnchor 
 (), 
  
 text 
 ); 
  
 System 
 . 
 out 
 . 
 printf 
 ( 
 "Paragraph text:\n%s\n" 
 , 
  
 paragraphText 
 ); 
  
 } 
  
 } 
  
 } 
  
 // Extract shards from the text field 
  
 private 
  
 static 
  
 String 
  
 getText 
 ( 
  Document 
 
 . 
  TextAnchor 
 
  
 textAnchor 
 , 
  
 String 
  
 text 
 ) 
  
 { 
  
 if 
  
 ( 
 textAnchor 
 . 
 getTextSegmentsList 
 (). 
 size 
 () 
 > 
 0 
 ) 
  
 { 
  
 int 
  
 startIdx 
  
 = 
  
 ( 
 int 
 ) 
  
 textAnchor 
 . 
 getTextSegments 
 ( 
 0 
 ). 
 getStartIndex 
 (); 
  
 int 
  
 endIdx 
  
 = 
  
 ( 
 int 
 ) 
  
 textAnchor 
 . 
 getTextSegments 
 ( 
 0 
 ). 
 getEndIndex 
 (); 
  
 return 
  
 text 
 . 
  substring 
 
 ( 
 startIdx 
 , 
  
 endIdx 
 ); 
  
 } 
  
 return 
  
 "[NO TEXT]" 
 ; 
  
 } 
 } 
 

Node.js

  /** 
 * TODO(developer): Uncomment these variables before running the sample. 
 */ 
 // const projectId = 'YOUR_PROJECT_ID'; 
 // const location = 'YOUR_PROJECT_LOCATION'; // Format is 'us' or 'eu' 
 // const processorId = 'YOUR_PROCESSOR_ID'; // Create processor in Cloud Console 
 // const filePath = '/path/to/local/pdf'; 
 const 
  
 { 
 DocumentProcessorServiceClient 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/documentai 
' 
 ). 
 v1 
 ; 
 // Instantiates a client 
 // apiEndpoint regions available: eu-documentai.googleapis.com, us-documentai.googleapis.com (Required if using eu based processor) 
 // const client = new DocumentProcessorServiceClient({apiEndpoint: 'eu-documentai.googleapis.com'}); 
 const 
  
 client 
  
 = 
  
 new 
  
  DocumentProcessorServiceClient 
 
 (); 
 async 
  
 function 
  
 quickstart 
 () 
  
 { 
  
 // The full resource name of the processor, e.g.: 
  
 // projects/project-id/locations/location/processor/processor-id 
  
 // You must create new processors in the Cloud Console first 
  
 const 
  
 name 
  
 = 
  
 `projects/ 
 ${ 
 projectId 
 } 
 /locations/ 
 ${ 
 location 
 } 
 /processors/ 
 ${ 
 processorId 
 } 
 ` 
 ; 
  
 // Read the file into memory. 
  
 const 
  
 fs 
  
 = 
  
 require 
 ( 
 'fs' 
 ). 
 promises 
 ; 
  
 const 
  
 imageFile 
  
 = 
  
 await 
  
 fs 
 . 
 readFile 
 ( 
 filePath 
 ); 
  
 // Convert the image data to a Buffer and base64 encode it. 
  
 const 
  
 encodedImage 
  
 = 
  
 Buffer 
 . 
 from 
 ( 
 imageFile 
 ). 
 toString 
 ( 
 'base64' 
 ); 
  
 const 
  
 request 
  
 = 
  
 { 
  
 name 
 , 
  
 rawDocument 
 : 
  
 { 
  
 content 
 : 
  
 encodedImage 
 , 
  
 mimeType 
 : 
  
 'application/pdf' 
 , 
  
 }, 
  
 }; 
  
 // Recognizes text entities in the PDF document 
  
 const 
  
 [ 
 result 
 ] 
  
 = 
  
 await 
  
 client 
 . 
 processDocument 
 ( 
 request 
 ); 
  
 const 
  
 { 
 document 
 } 
  
 = 
  
 result 
 ; 
  
 // Get all of the document text as one big string 
  
 const 
  
 { 
 text 
 } 
  
 = 
  
 document 
 ; 
  
 // Extract shards from the text field 
  
 const 
  
 getText 
  
 = 
  
 textAnchor 
  
 = 
>  
 { 
  
 if 
  
 ( 
 ! 
 textAnchor 
 . 
 textSegments 
  
 || 
  
 textAnchor 
 . 
 textSegments 
 . 
 length 
  
 === 
  
 0 
 ) 
  
 { 
  
 return 
  
 '' 
 ; 
  
 } 
  
 // First shard in document doesn't have startIndex property 
  
 const 
  
 startIndex 
  
 = 
  
 textAnchor 
 . 
 textSegments 
 [ 
 0 
 ]. 
 startIndex 
  
 || 
  
 0 
 ; 
  
 const 
  
 endIndex 
  
 = 
  
 textAnchor 
 . 
 textSegments 
 [ 
 0 
 ]. 
 endIndex 
 ; 
  
 return 
  
 text 
 . 
 substring 
 ( 
 startIndex 
 , 
  
 endIndex 
 ); 
  
 }; 
  
 // Read the text recognition output from the processor 
  
 console 
 . 
 log 
 ( 
 'The document contains the following paragraphs:' 
 ); 
  
 const 
  
 [ 
 page1 
 ] 
  
 = 
  
 document 
 . 
 pages 
 ; 
  
 const 
  
 { 
 paragraphs 
 } 
  
 = 
  
 page1 
 ; 
  
 for 
  
 ( 
 const 
  
 paragraph 
  
 of 
  
 paragraphs 
 ) 
  
 { 
  
 const 
  
 paragraphText 
  
 = 
  
 getText 
 ( 
 paragraph 
 . 
 layout 
 . 
 textAnchor 
 ); 
  
 console 
 . 
 log 
 ( 
 `Paragraph text:\n 
 ${ 
 paragraphText 
 } 
 ` 
 ); 
  
 } 
 } 
 

PHP

  # Include the autoloader for libraries installed with Composer. 
 require __DIR__ . '/vendor/autoload.php'; 
 # Import the Google Cloud client library. 
 use Google\Cloud\DocumentAI\V1\Client\DocumentProcessorServiceClient; 
 use Google\Cloud\DocumentAI\V1\RawDocument; 
 use Google\Cloud\DocumentAI\V1\ProcessRequest; 
 # TODO(developer): Update the following lines before running the sample. 
 # Your Google Cloud Platform project ID. 
 $projectId = 'YOUR_PROJECT_ID'; 
 # Your Processor Location. 
 $location = 'us'; 
 # Your Processor ID as hexadecimal characters. 
 # Not to be confused with the Processor Display Name. 
 $processorId = 'YOUR_PROCESSOR_ID'; 
 # Path for the file to read. 
 $documentPath = 'resources/invoice.pdf'; 
 # Create Client. 
 $client = new DocumentProcessorServiceClient(); 
 # Read in file. 
 $handle = fopen($documentPath, 'rb'); 
 $contents = fread($handle, filesize($documentPath)); 
 fclose($handle); 
 # Load file contents into a RawDocument. 
 $rawDocument = (new RawDocument()) 
 ->setContent($contents) 
 ->SetMimeType('application/pdf'); 
 # Get the Fully-qualified Processor Name. 
 $fullProcessorName = $client->processorName($projectId, $location, $processorId); 
 # Send a ProcessRequest and get a ProcessResponse. 
 $request = (new ProcessRequest()) 
 ->setName($fullProcessorName) 
 ->setRawDocument($rawDocument); 
 $response = $client->processDocument($request); 
 # Show the text found in the document. 
 printf('Document Text: %s', $response->getDocument()->getText()); 
 

Python

  from 
  
 google.api_core.client_options 
  
 import 
 ClientOptions 
 from 
  
 google.cloud 
  
 import 
  documentai_v1 
 
 # TODO(developer): Create a processor of type "OCR_PROCESSOR". 
 # TODO(developer): Update and uncomment these variables before running the sample. 
 # project_id = "MY_PROJECT_ID" 
 # Processor ID as hexadecimal characters. 
 # Not to be confused with the Processor Display Name. 
 # processor_id = "MY_PROCESSOR_ID" 
 # Processor location. For example: "us" or "eu". 
 # location = "MY_PROCESSOR_LOCATION" 
 # Path for file to process. 
 # file_path = "/path/to/local/pdf" 
 # Set `api_endpoint` if you use a location other than "us". 
 opts 
 = 
 ClientOptions 
 ( 
 api_endpoint 
 = 
 f 
 " 
 { 
 location 
 } 
 -documentai.googleapis.com" 
 ) 
 # Initialize Document AI client. 
 client 
 = 
  documentai_v1 
 
 . 
  DocumentProcessorServiceClient 
 
 ( 
 client_options 
 = 
 opts 
 ) 
 # Get the Fully-qualified Processor path. 
 full_processor_name 
 = 
 client 
 . 
  processor_path 
 
 ( 
 project_id 
 , 
 location 
 , 
 processor_id 
 ) 
 # Get a Processor reference. 
 request 
 = 
  documentai_v1 
 
 . 
  GetProcessorRequest 
 
 ( 
 name 
 = 
 full_processor_name 
 ) 
 processor 
 = 
 client 
 . 
  get_processor 
 
 ( 
 request 
 = 
 request 
 ) 
 # `processor.name` is the full resource name of the processor. 
 # For example: `projects/{project_id}/locations/{location}/processors/{processor_id}` 
 print 
 ( 
 f 
 "Processor Name: 
 { 
 processor 
 . 
 name 
 } 
 " 
 ) 
 # Read the file into memory. 
 with 
 open 
 ( 
 file_path 
 , 
 "rb" 
 ) 
 as 
 image 
 : 
 image_content 
 = 
 image 
 . 
 read 
 () 
 # Load binary data. 
 # For supported MIME types, refer to https://cloud.google.com/document-ai/docs/file-types 
 raw_document 
 = 
  documentai_v1 
 
 . 
  RawDocument 
 
 ( 
 content 
 = 
 image_content 
 , 
 mime_type 
 = 
 "application/pdf" 
 , 
 ) 
 # Send a request and get the processed document. 
 request 
 = 
  documentai_v1 
 
 . 
  ProcessRequest 
 
 ( 
 name 
 = 
 processor 
 . 
 name 
 , 
 raw_document 
 = 
 raw_document 
 ) 
 result 
 = 
 client 
 . 
  process_document 
 
 ( 
 request 
 = 
 request 
 ) 
 document 
 = 
 result 
 . 
  document 
 
 # Read the text recognition output from the processor. 
 # For a full list of `Document` object attributes, reference this page: 
 # https://cloud.google.com/document-ai/docs/reference/rest/v1/Document 
 print 
 ( 
 "The document contains the following text:" 
 ) 
 print 
 ( 
  document 
 
 . 
  text 
 
 ) 
 

Ruby

  require 
  
 "google/cloud/document_ai/v1" 
 ## 
 # Document AI quickstart 
 # 
 # @param project_id [String] Your Google Cloud project (e.g. "my-project") 
 # @param location_id [String] Your Processor Location (e.g. "us") 
 # @param processor_id [String] Your Processor ID (e.g. "a14dae8f043b60bd") 
 # @param file_path [String] Path to Local File (e.g. "invoice.pdf") 
 # @param mime_type [String] Refer to https://cloud.google.com/document-ai/docs/file-types (e.g. "application/pdf") 
 # 
 def 
  
 quickstart 
  
 project_id 
 :, 
  
 location_id 
 :, 
  
 processor_id 
 :, 
  
 file_path 
 :, 
  
 mime_type 
 : 
  
 # Create the Document AI client. 
  
 client 
  
 = 
  
 :: 
 Google 
 :: 
 Cloud 
 :: 
 DocumentAI 
 :: 
 V1 
 :: 
 DocumentProcessorService 
 :: 
 Client 
 . 
 new 
  
 do 
  
 | 
 config 
 | 
  
 config 
 . 
 endpoint 
  
 = 
  
 " 
 #{ 
 location_id 
 } 
 -documentai.googleapis.com" 
  
 end 
  
 # Build the resource name from the project. 
  
 name 
  
 = 
  
 client 
 . 
 processor_path 
 ( 
  
 project 
 : 
  
 project_id 
 , 
  
 location 
 : 
  
 location_id 
 , 
  
 processor 
 : 
  
 processor_id 
  
 ) 
  
 # Read the bytes into memory 
  
 content 
  
 = 
  
 File 
 . 
 binread 
  
 file_path 
  
 # Create request 
  
 request 
  
 = 
  
 Google 
 :: 
 Cloud 
 :: 
 DocumentAI 
 :: 
 V1 
 :: 
 ProcessRequest 
 . 
 new 
 ( 
  
 skip_human_review 
 : 
  
 true 
 , 
  
 name 
 : 
  
 name 
 , 
  
 raw_document 
 : 
  
 { 
  
 content 
 : 
  
 content 
 , 
  
 mime_type 
 : 
  
 mime_type 
  
 } 
  
 ) 
  
 # Process document 
  
 response 
  
 = 
  
 client 
 . 
 process_document 
  
 request 
  
 # Handle response 
  
 puts 
  
 response 
 . 
 document 
 . 
 text 
 end 
 

Additional resources

C++

The following list contains links to more resources related to the client library for C++:

C#

The following list contains links to more resources related to the client library for C#:

Go

The following list contains links to more resources related to the client library for Go:

Java

The following list contains links to more resources related to the client library for Java:

Node.js

The following list contains links to more resources related to the client library for Node.js:

PHP

The following list contains links to more resources related to the client library for PHP:

Python

The following list contains links to more resources related to the client library for Python:

Ruby

The following list contains links to more resources related to the client library for Ruby:

Create a Mobile Website
View Site in Mobile | Classic
Share by: