Process documents by using client libraries

This page shows you how to get started with the Document AI API in your favorite programming language.

Before you begin

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Verify that billing is enabled for your Google Cloud project .

  4. Enable the Document AI API.

    Enable the API

  5. Create a service account:

    1. In the Google Cloud console, go to the Create service account page.

      Go to Create service account
    2. Select your project.
    3. In the Service account name field, enter a name. The Google Cloud console fills in the Service account ID field based on this name.

      In the Service account description field, enter a description. For example, Service account for quickstart .

    4. Click Create and continue .
    5. Grant the Project > Owner role to the service account.

      To grant the role, find the Select a role list, then select Project > Owner .

    6. Click Continue .
    7. Click Done to finish creating the service account.

      Do not close your browser window. You will use it in the next step.

  6. Create a service account key:

    1. In the Google Cloud console, click the email address for the service account that you created.
    2. Click Keys .
    3. Click Add key , and then click Create new key .
    4. Click Create . A JSON key file is downloaded to your computer.
    5. Click Close .
  7. Set the environment variable GOOGLE_APPLICATION_CREDENTIALS to the path of the JSON file that contains your credentials. This variable applies only to your current shell session, so if you open a new session, set the variable again.

  8. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  9. Verify that billing is enabled for your Google Cloud project .

  10. Enable the Document AI API.

    Enable the API

  11. Create a service account:

    1. In the Google Cloud console, go to the Create service account page.

      Go to Create service account
    2. Select your project.
    3. In the Service account name field, enter a name. The Google Cloud console fills in the Service account ID field based on this name.

      In the Service account description field, enter a description. For example, Service account for quickstart .

    4. Click Create and continue .
    5. Grant the Project > Owner role to the service account.

      To grant the role, find the Select a role list, then select Project > Owner .

    6. Click Continue .
    7. Click Done to finish creating the service account.

      Do not close your browser window. You will use it in the next step.

  12. Create a service account key:

    1. In the Google Cloud console, click the email address for the service account that you created.
    2. Click Keys .
    3. Click Add key , and then click Create new key .
    4. Click Create . A JSON key file is downloaded to your computer.
    5. Click Close .
  13. Set the environment variable GOOGLE_APPLICATION_CREDENTIALS to the path of the JSON file that contains your credentials. This variable applies only to your current shell session, so if you open a new session, set the variable again.

Install the client library

C#

For more on setting up your C# development environment, refer to the C# Development Environment Setup Guide .

Install-Package Google.Cloud.DocumentAI.V1 -Pre

Go

go get cloud.google.com/go/documentai

Java

For more on setting up your Java development environment, refer to the Java Development Environment Setup Guide .

If you are using Maven , add the following to your pom.xml file. For more information about BOMs, see The Google Cloud Platform Libraries BOM .

 <dependencyManagement>
  <dependencies>
    <dependency>
      <groupId>com.google.cloud</groupId>
      <artifactId>libraries-bom</artifactId>
      <version>26.66.0</version>
      <type>pom</type>
      <scope>import</scope>
    </dependency>
  </dependencies>
</dependencyManagement>

<dependencies>
  <dependency>
    <groupId>com.google.cloud</groupId>
    <artifactId>google-cloud-document-ai</artifactId>
  </dependency>
</dependencies> 

If you are using Gradle , add the following to your dependencies:

 implementation 'com.google.cloud:google-cloud-document-ai:2.76.0' 

If you are using sbt , add the following to your dependencies:

 libraryDependencies += "com.google.cloud" % "google-cloud-document-ai" % "2.76.0" 

If you're using Visual Studio Code, IntelliJ, or Eclipse, you can add client libraries to your project using the following IDE plugins:

The plugins provide additional functionality, such as key management for service accounts. Refer to each plugin's documentation for details.

Node.js

For more on setting up your Node.js development environment, refer to the Node.js Development Environment Setup Guide .

npm install @google-cloud/documentai

PHP

composer require google/cloud-document-ai

Python

For more on setting up your Python development environment, refer to the Python Development Environment Setup Guide .

pip install --upgrade google-cloud-documentai

Ruby

For more on setting up your Ruby development environment, refer to the Ruby Development Environment Setup Guide .

gem install google-cloud-document_ai

Document processing

Use Document AI API to request information from a local PDF document. To run the following samples you must first create a processor in the UI.

Console

  1. In the Google Cloud console, in the Document AI section, go to the Processorspage.

    Go to the Processors page

  2. Select Create processor.

  3. Click on the processor type from the list you want to create.

  4. In the side Create processorwindow specify a processor name.

  5. Select your Region from the list.

  6. Click Createto create your processor.

After you have created a processor and have the processor ID, run the following code to request individual document processing:

C#

For more information, see the Document AI C# API reference documentation .

To authenticate to Document AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  using 
  
  Google.Cloud.DocumentAI.V1 
 
 ; 
 using 
  
  Google.Protobuf 
 
 ; 
 using 
  
 System 
 ; 
 using 
  
 System.IO 
 ; 
 public 
  
 class 
  
 QuickstartSample 
 { 
  
 public 
  
 Document 
  
 Quickstart 
 ( 
  
 string 
  
 projectId 
  
 = 
  
 "your-project-id" 
 , 
  
 string 
  
 locationId 
  
 = 
  
 "your-processor-location" 
 , 
  
 string 
  
 processorId 
  
 = 
  
 "your-processor-id" 
 , 
  
 string 
  
 localPath 
  
 = 
  
 "my-local-path/my-file-name" 
 , 
  
 string 
  
 mimeType 
  
 = 
  
 "application/pdf" 
  
 ) 
  
 { 
  
 // Create client 
  
 var 
  
 client 
  
 = 
  
 new 
  
  DocumentProcessorServiceClientBuilder 
 
  
 { 
  
 Endpoint 
  
 = 
  
 $"{locationId}-documentai.googleapis.com" 
  
 }. 
  Build 
 
 (); 
  
 // Read in local file 
  
 using 
  
 var 
  
 fileStream 
  
 = 
  
 File 
 . 
 OpenRead 
 ( 
 localPath 
 ); 
  
 var 
  
 rawDocument 
  
 = 
  
 new 
  
  RawDocument 
 
  
 { 
  
 Content 
  
 = 
  
  ByteString 
 
 . 
  FromStream 
 
 ( 
 fileStream 
 ), 
  
 MimeType 
  
 = 
  
 mimeType 
  
 }; 
  
 // Initialize request argument(s) 
  
 var 
  
 request 
  
 = 
  
 new 
  
  ProcessRequest 
 
  
 { 
  
 Name 
  
 = 
  
  ProcessorName 
 
 . 
  FromProjectLocationProcessor 
 
 ( 
 projectId 
 , 
  
 locationId 
 , 
  
 processorId 
 ). 
 ToString 
 (), 
  
 RawDocument 
  
 = 
  
 rawDocument 
  
 }; 
  
 // Make the request 
  
 var 
  
 response 
  
 = 
  
 client 
 . 
 ProcessDocument 
 ( 
 request 
 ); 
  
 var 
  
 document 
  
 = 
  
 response 
 . 
  Document 
 
 ; 
  
 Console 
 . 
 WriteLine 
 ( 
 document 
 . 
 Text 
 ); 
  
 return 
  
 document 
 ; 
  
 } 
 } 
 

C++

For more information, see the Document AI C++ API reference documentation .

To authenticate to Document AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  #include 
  
 "google/cloud/documentai/v1/document_processor_client.h" 
 #include 
  
 "google/cloud/location.h" 
 #include <fstream> 
 #include <iostream> 
 #include <string> 
 int 
  
 main 
 ( 
 int 
  
 argc 
 , 
  
 char 
 * 
  
 argv 
 []) 
  
 try 
  
 { 
  
 if 
  
 ( 
 argc 
  
 != 
  
 5 
 ) 
  
 { 
  
 std 
 :: 
 cerr 
 << 
 "Usage: " 
 << 
 argv 
 [ 
 0 
 ] 
 << 
 " project-id location-id processor-id filename (PDF only) 
 \n 
 " 
 ; 
  
 return 
  
 1 
 ; 
  
 } 
  
 std 
 :: 
 string 
  
 const 
  
 location_id 
  
 = 
  
 argv 
 [ 
 2 
 ]; 
  
 if 
  
 ( 
 location_id 
  
 != 
  
 "us" 
 && 
 location_id 
  
 != 
  
 "eu" 
 ) 
  
 { 
  
 std 
 :: 
 cerr 
 << 
 "location-id must be either 'us' or 'eu' 
 \n 
 " 
 ; 
  
 return 
  
 1 
 ; 
  
 } 
  
 auto 
  
 const 
  
 location 
  
 = 
  
 google 
 :: 
 cloud 
 :: 
 Location 
 ( 
 argv 
 [ 
 1 
 ], 
  
 location_id 
 ); 
  
 namespace 
  
 documentai 
  
 = 
  
 :: 
 google 
 :: 
 cloud 
 :: 
 documentai_v1 
 ; 
  
 auto 
  
 client 
  
 = 
  
 documentai 
 :: 
 DocumentProcessorServiceClient 
 ( 
  
 documentai 
 :: 
 MakeDocumentProcessorServiceConnection 
 ( 
  
 location 
 . 
 location_id 
 ())); 
  
 google 
 :: 
 cloud 
 :: 
 documentai 
 :: 
 v1 
 :: 
 ProcessRequest 
  
 req 
 ; 
  
 req 
 . 
 set_name 
 ( 
 location 
 . 
 FullName 
 () 
  
 + 
  
 "/processors/" 
  
 + 
  
 argv 
 [ 
 3 
 ]); 
  
 req 
 . 
 set_skip_human_review 
 ( 
 true 
 ); 
  
 auto 
&  
 doc 
  
 = 
  
 * 
 req 
 . 
 mutable_raw_document 
 (); 
  
 doc 
 . 
 set_mime_type 
 ( 
 "application/pdf" 
 ); 
  
 std 
 :: 
 ifstream 
  
 is 
 ( 
 argv 
 [ 
 4 
 ]); 
  
 doc 
 . 
 set_content 
 ( 
 std 
 :: 
 string 
 { 
 std 
 :: 
 istreambuf_iterator<char> 
 ( 
 is 
 ), 
  
 {}}); 
  
 auto 
  
 resp 
  
 = 
  
 client 
 . 
 ProcessDocument 
 ( 
 std 
 :: 
 move 
 ( 
 req 
 )); 
  
 if 
  
 ( 
 ! 
 resp 
 ) 
  
 throw 
  
 std 
 :: 
 move 
 ( 
 resp 
 ). 
 status 
 (); 
  
 std 
 :: 
 cout 
 << 
 resp 
 - 
> document 
 (). 
 text 
 () 
 << 
 " 
 \n 
 " 
 ; 
  
 return 
  
 0 
 ; 
 } 
  
 catch 
  
 ( 
 google 
 :: 
 cloud 
 :: 
 Status 
  
 const 
&  
 status 
 ) 
  
 { 
  
 std 
 :: 
 cerr 
 << 
 "google::cloud::Status thrown: " 
 << 
 status 
 << 
 " 
 \n 
 " 
 ; 
  
 return 
  
 1 
 ; 
 } 
 

Go

For more information, see the Document AI Go API reference documentation .

To authenticate to Document AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  import 
  
 ( 
  
 "context" 
  
 "flag" 
  
 "fmt" 
  
 "os" 
  
 documentai 
  
 "cloud.google.com/go/documentai/apiv1" 
  
 "cloud.google.com/go/documentai/apiv1/documentaipb" 
  
 "google.golang.org/api/option" 
 ) 
 func 
  
 main 
 () 
  
 { 
  
 projectID 
  
 := 
  
 flag 
 . 
 String 
 ( 
 "project_id" 
 , 
  
 "PROJECT_ID" 
 , 
  
 "Cloud Project ID" 
 ) 
  
 location 
  
 := 
  
 flag 
 . 
 String 
 ( 
 "location" 
 , 
  
 "us" 
 , 
  
 "The Processor location" 
 ) 
  
 // Create a Processor before running sample 
  
 processorID 
  
 := 
  
 flag 
 . 
 String 
 ( 
 "processor_id" 
 , 
  
 "aaaaaaaa" 
 , 
  
 "The Processor ID" 
 ) 
  
 filePath 
  
 := 
  
 flag 
 . 
 String 
 ( 
 "file_path" 
 , 
  
 "invoice.pdf" 
 , 
  
 "The path to the file to parse" 
 ) 
  
 mimeType 
  
 := 
  
 flag 
 . 
 String 
 ( 
 "mime_type" 
 , 
  
 "application/pdf" 
 , 
  
 "The mimeType of the file" 
 ) 
  
 flag 
 . 
 Parse 
 () 
  
 ctx 
  
 := 
  
 context 
 . 
 Background 
 () 
  
 endpoint 
  
 := 
  
 fmt 
 . 
 Sprintf 
 ( 
 "%s-documentai.googleapis.com:443" 
 , 
  
 * 
 location 
 ) 
  
 client 
 , 
  
 err 
  
 := 
  
 documentai 
 . 
  NewDocumentProcessorClient 
 
 ( 
 ctx 
 , 
  
 option 
 . 
 WithEndpoint 
 ( 
 endpoint 
 )) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 fmt 
 . 
 Println 
 ( 
 fmt 
 . 
 Errorf 
 ( 
 "error creating Document AI client: %w" 
 , 
  
 err 
 )) 
  
 } 
  
 defer 
  
 client 
 . 
  Close 
 
 () 
  
 // Open local file. 
  
 data 
 , 
  
 err 
  
 := 
  
 os 
 . 
 ReadFile 
 ( 
 * 
 filePath 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 fmt 
 . 
 Println 
 ( 
 fmt 
 . 
 Errorf 
 ( 
 "os.ReadFile: %w" 
 , 
  
 err 
 )) 
  
 } 
  
 req 
  
 := 
  
& documentaipb 
 . 
 ProcessRequest 
 { 
  
 Name 
 : 
  
 fmt 
 . 
 Sprintf 
 ( 
 "projects/%s/locations/%s/processors/%s" 
 , 
  
 * 
 projectID 
 , 
  
 * 
 location 
 , 
  
 * 
 processorID 
 ), 
  
 Source 
 : 
  
& documentaipb 
 . 
 ProcessRequest_RawDocument 
 { 
  
 RawDocument 
 : 
  
& documentaipb 
 . 
 RawDocument 
 { 
  
 Content 
 : 
  
 data 
 , 
  
 MimeType 
 : 
  
 * 
 mimeType 
 , 
  
 }, 
  
 }, 
  
 } 
  
 resp 
 , 
  
 err 
  
 := 
  
 client 
 . 
 ProcessDocument 
 ( 
 ctx 
 , 
  
 req 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 fmt 
 . 
 Println 
 ( 
 fmt 
 . 
 Errorf 
 ( 
 "processDocument: %w" 
 , 
  
 err 
 )) 
  
 } 
  
 // Handle the results. 
  
 document 
  
 := 
  
 resp 
 . 
 GetDocument 
 () 
  
 fmt 
 . 
 Printf 
 ( 
 "Document Text: %s" 
 , 
  
 document 
 . 
 GetText 
 ()) 
 } 
 

Java

For more information, see the Document AI Java API reference documentation .

To authenticate to Document AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  import 
  
 com.google.cloud.documentai.v1. Document 
 
 ; 
 import 
  
 com.google.cloud.documentai.v1. DocumentProcessorServiceClient 
 
 ; 
 import 
  
 com.google.cloud.documentai.v1. DocumentProcessorServiceSettings 
 
 ; 
 import 
  
 com.google.cloud.documentai.v1. ProcessRequest 
 
 ; 
 import 
  
 com.google.cloud.documentai.v1. ProcessResponse 
 
 ; 
 import 
  
 com.google.cloud.documentai.v1. RawDocument 
 
 ; 
 import 
  
 com.google.protobuf. ByteString 
 
 ; 
 import 
  
 java.io.IOException 
 ; 
 import 
  
 java.nio.file.Files 
 ; 
 import 
  
 java.nio.file.Paths 
 ; 
 import 
  
 java.util.List 
 ; 
 import 
  
 java.util.concurrent.ExecutionException 
 ; 
 import 
  
 java.util.concurrent.TimeoutException 
 ; 
 public 
  
 class 
 QuickStart 
  
 { 
  
 public 
  
 static 
  
 void 
  
 main 
 ( 
 String 
 [] 
  
 args 
 ) 
  
 throws 
  
 IOException 
 , 
  
 InterruptedException 
 , 
  
 ExecutionException 
 , 
  
 TimeoutException 
  
 { 
  
 // TODO(developer): Replace these variables before running the sample. 
  
 String 
  
 projectId 
  
 = 
  
 "your-project-id" 
 ; 
  
 String 
  
 location 
  
 = 
  
 "your-project-location" 
 ; 
  
 // Format is "us" or "eu". 
  
 String 
  
 processorId 
  
 = 
  
 "your-processor-id" 
 ; 
  
 String 
  
 filePath 
  
 = 
  
 "path/to/input/file.pdf" 
 ; 
  
 quickStart 
 ( 
 projectId 
 , 
  
 location 
 , 
  
 processorId 
 , 
  
 filePath 
 ); 
  
 } 
  
 public 
  
 static 
  
 void 
  
 quickStart 
 ( 
  
 String 
  
 projectId 
 , 
  
 String 
  
 location 
 , 
  
 String 
  
 processorId 
 , 
  
 String 
  
 filePath 
 ) 
  
 throws 
  
 IOException 
 , 
  
 InterruptedException 
 , 
  
 ExecutionException 
 , 
  
 TimeoutException 
  
 { 
  
 // Initialize client that will be used to send requests. This client only needs 
  
 // to be created 
  
 // once, and can be reused for multiple requests. After completing all of your 
  
 // requests, call 
  
 // the "close" method on the client to safely clean up any remaining background 
  
 // resources. 
  
 String 
  
 endpoint 
  
 = 
  
 String 
 . 
 format 
 ( 
 "%s-documentai.googleapis.com:443" 
 , 
  
 location 
 ); 
  
  DocumentProcessorServiceSettings 
 
  
 settings 
  
 = 
  
  DocumentProcessorServiceSettings 
 
 . 
 newBuilder 
 (). 
 setEndpoint 
 ( 
 endpoint 
 ). 
 build 
 (); 
  
 try 
  
 ( 
  DocumentProcessorServiceClient 
 
  
 client 
  
 = 
  
  DocumentProcessorServiceClient 
 
 . 
 create 
 ( 
 settings 
 )) 
  
 { 
  
 // The full resource name of the processor, e.g.: 
  
 // projects/project-id/locations/location/processor/processor-id 
  
 // You must create new processors in the Cloud Console first 
  
 String 
  
 name 
  
 = 
  
 String 
 . 
 format 
 ( 
 "projects/%s/locations/%s/processors/%s" 
 , 
  
 projectId 
 , 
  
 location 
 , 
  
 processorId 
 ); 
  
 // Read the file. 
  
 byte 
 [] 
  
 imageFileData 
  
 = 
  
 Files 
 . 
 readAllBytes 
 ( 
 Paths 
 . 
 get 
 ( 
 filePath 
 )); 
  
 // Convert the image data to a Buffer and base64 encode it. 
  
  ByteString 
 
  
 content 
  
 = 
  
  ByteString 
 
 . 
  copyFrom 
 
 ( 
 imageFileData 
 ); 
  
  RawDocument 
 
  
 document 
  
 = 
  
  RawDocument 
 
 . 
 newBuilder 
 (). 
 setContent 
 ( 
 content 
 ). 
 setMimeType 
 ( 
 "application/pdf" 
 ). 
 build 
 (); 
  
 // Configure the process request. 
  
  ProcessRequest 
 
  
 request 
  
 = 
  
  ProcessRequest 
 
 . 
 newBuilder 
 (). 
 setName 
 ( 
 name 
 ). 
  setRawDocument 
 
 ( 
 document 
 ). 
 build 
 (); 
  
 // Recognizes text entities in the PDF document 
  
  ProcessResponse 
 
  
 result 
  
 = 
  
 client 
 . 
 processDocument 
 ( 
 request 
 ); 
  
  Document 
 
  
 documentResponse 
  
 = 
  
 result 
 . 
  getDocument 
 
 (); 
  
 // Get all of the document text as one big string 
  
 String 
  
 text 
  
 = 
  
 documentResponse 
 . 
  getText 
 
 (); 
  
 // Read the text recognition output from the processor 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "The document contains the following paragraphs:" 
 ); 
  
  Document 
 
 . 
  Page 
 
  
 firstPage 
  
 = 
  
 documentResponse 
 . 
  getPages 
 
 ( 
 0 
 ); 
  
 List<Document 
 . 
  Page 
 
 . 
  Paragraph 
 
>  
 paragraphs 
  
 = 
  
 firstPage 
 . 
 getParagraphsList 
 (); 
  
 for 
  
 ( 
  Document 
 
 . 
  Page 
 
 . 
  Paragraph 
 
  
 paragraph 
  
 : 
  
 paragraphs 
 ) 
  
 { 
  
 String 
  
 paragraphText 
  
 = 
  
 getText 
 ( 
 paragraph 
 . 
 getLayout 
 (). 
 getTextAnchor 
 (), 
  
 text 
 ); 
  
 System 
 . 
 out 
 . 
 printf 
 ( 
 "Paragraph text:\n%s\n" 
 , 
  
 paragraphText 
 ); 
  
 } 
  
 } 
  
 } 
  
 // Extract shards from the text field 
  
 private 
  
 static 
  
 String 
  
 getText 
 ( 
  Document 
 
 . 
  TextAnchor 
 
  
 textAnchor 
 , 
  
 String 
  
 text 
 ) 
  
 { 
  
 if 
  
 ( 
 textAnchor 
 . 
 getTextSegmentsList 
 (). 
 size 
 () 
 > 
 0 
 ) 
  
 { 
  
 int 
  
 startIdx 
  
 = 
  
 ( 
 int 
 ) 
  
 textAnchor 
 . 
 getTextSegments 
 ( 
 0 
 ). 
 getStartIndex 
 (); 
  
 int 
  
 endIdx 
  
 = 
  
 ( 
 int 
 ) 
  
 textAnchor 
 . 
 getTextSegments 
 ( 
 0 
 ). 
 getEndIndex 
 (); 
  
 return 
  
 text 
 . 
  substring 
 
 ( 
 startIdx 
 , 
  
 endIdx 
 ); 
  
 } 
  
 return 
  
 "[NO TEXT]" 
 ; 
  
 } 
 } 
 

Node.js

For more information, see the Document AI Node.js API reference documentation .

To authenticate to Document AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  /** 
 * TODO(developer): Uncomment these variables before running the sample. 
 */ 
 // const projectId = 'YOUR_PROJECT_ID'; 
 // const location = 'YOUR_PROJECT_LOCATION'; // Format is 'us' or 'eu' 
 // const processorId = 'YOUR_PROCESSOR_ID'; // Create processor in Cloud Console 
 // const filePath = '/path/to/local/pdf'; 
 const 
  
 { 
 DocumentProcessorServiceClient 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/documentai 
' 
 ). 
 v1 
 ; 
 // Instantiates a client 
 // apiEndpoint regions available: eu-documentai.googleapis.com, us-documentai.googleapis.com (Required if using eu based processor) 
 // const client = new DocumentProcessorServiceClient({apiEndpoint: 'eu-documentai.googleapis.com'}); 
 const 
  
 client 
  
 = 
  
 new 
  
  DocumentProcessorServiceClient 
 
 (); 
 async 
  
 function 
  
 quickstart 
 () 
  
 { 
  
 // The full resource name of the processor, e.g.: 
  
 // projects/project-id/locations/location/processor/processor-id 
  
 // You must create new processors in the Cloud Console first 
  
 const 
  
 name 
  
 = 
  
 `projects/ 
 ${ 
 projectId 
 } 
 /locations/ 
 ${ 
 location 
 } 
 /processors/ 
 ${ 
 processorId 
 } 
 ` 
 ; 
  
 // Read the file into memory. 
  
 const 
  
 fs 
  
 = 
  
 require 
 ( 
 'fs' 
 ). 
 promises 
 ; 
  
 const 
  
 imageFile 
  
 = 
  
 await 
  
 fs 
 . 
 readFile 
 ( 
 filePath 
 ); 
  
 // Convert the image data to a Buffer and base64 encode it. 
  
 const 
  
 encodedImage 
  
 = 
  
 Buffer 
 . 
 from 
 ( 
 imageFile 
 ). 
 toString 
 ( 
 'base64' 
 ); 
  
 const 
  
 request 
  
 = 
  
 { 
  
 name 
 , 
  
 rawDocument 
 : 
  
 { 
  
 content 
 : 
  
 encodedImage 
 , 
  
 mimeType 
 : 
  
 'application/pdf' 
 , 
  
 }, 
  
 }; 
  
 // Recognizes text entities in the PDF document 
  
 const 
  
 [ 
 result 
 ] 
  
 = 
  
 await 
  
 client 
 . 
 processDocument 
 ( 
 request 
 ); 
  
 const 
  
 { 
 document 
 } 
  
 = 
  
 result 
 ; 
  
 // Get all of the document text as one big string 
  
 const 
  
 { 
 text 
 } 
  
 = 
  
 document 
 ; 
  
 // Extract shards from the text field 
  
 const 
  
 getText 
  
 = 
  
 textAnchor 
  
 = 
>  
 { 
  
 if 
  
 ( 
 ! 
 textAnchor 
 . 
 textSegments 
  
 || 
  
 textAnchor 
 . 
 textSegments 
 . 
 length 
  
 === 
  
 0 
 ) 
  
 { 
  
 return 
  
 '' 
 ; 
  
 } 
  
 // First shard in document doesn't have startIndex property 
  
 const 
  
 startIndex 
  
 = 
  
 textAnchor 
 . 
 textSegments 
 [ 
 0 
 ]. 
 startIndex 
  
 || 
  
 0 
 ; 
  
 const 
  
 endIndex 
  
 = 
  
 textAnchor 
 . 
 textSegments 
 [ 
 0 
 ]. 
 endIndex 
 ; 
  
 return 
  
 text 
 . 
 substring 
 ( 
 startIndex 
 , 
  
 endIndex 
 ); 
  
 }; 
  
 // Read the text recognition output from the processor 
  
 console 
 . 
 log 
 ( 
 'The document contains the following paragraphs:' 
 ); 
  
 const 
  
 [ 
 page1 
 ] 
  
 = 
  
 document 
 . 
 pages 
 ; 
  
 const 
  
 { 
 paragraphs 
 } 
  
 = 
  
 page1 
 ; 
  
 for 
  
 ( 
 const 
  
 paragraph 
  
 of 
  
 paragraphs 
 ) 
  
 { 
  
 const 
  
 paragraphText 
  
 = 
  
 getText 
 ( 
 paragraph 
 . 
 layout 
 . 
 textAnchor 
 ); 
  
 console 
 . 
 log 
 ( 
 `Paragraph text:\n 
 ${ 
 paragraphText 
 } 
 ` 
 ); 
  
 } 
 } 
 

PHP

For more information, see the Document AI PHP API reference documentation .

To authenticate to Document AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  # Include the autoloader for libraries installed with Composer. 
 require __DIR__ . '/vendor/autoload.php'; 
 # Import the Google Cloud client library. 
 use Google\Cloud\DocumentAI\V1\Client\DocumentProcessorServiceClient; 
 use Google\Cloud\DocumentAI\V1\RawDocument; 
 use Google\Cloud\DocumentAI\V1\ProcessRequest; 
 # TODO(developer): Update the following lines before running the sample. 
 # Your Google Cloud Platform project ID. 
 $projectId = 'YOUR_PROJECT_ID'; 
 # Your Processor Location. 
 $location = 'us'; 
 # Your Processor ID as hexadecimal characters. 
 # Not to be confused with the Processor Display Name. 
 $processorId = 'YOUR_PROCESSOR_ID'; 
 # Path for the file to read. 
 $documentPath = 'resources/invoice.pdf'; 
 # Create Client. 
 $client = new DocumentProcessorServiceClient(); 
 # Read in file. 
 $handle = fopen($documentPath, 'rb'); 
 $contents = fread($handle, filesize($documentPath)); 
 fclose($handle); 
 # Load file contents into a RawDocument. 
 $rawDocument = (new RawDocument()) 
 ->setContent($contents) 
 ->SetMimeType('application/pdf'); 
 # Get the Fully-qualified Processor Name. 
 $fullProcessorName = $client->processorName($projectId, $location, $processorId); 
 # Send a ProcessRequest and get a ProcessResponse. 
 $request = (new ProcessRequest()) 
 ->setName($fullProcessorName) 
 ->setRawDocument($rawDocument); 
 $response = $client->processDocument($request); 
 # Show the text found in the document. 
 printf('Document Text: %s', $response->getDocument()->getText()); 
 

Python

For more information, see the Document AI Python API reference documentation .

To authenticate to Document AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  from 
  
 google.api_core.client_options 
  
 import 
 ClientOptions 
 from 
  
 google.cloud 
  
 import 
  documentai_v1 
 
 # TODO(developer): Create a processor of type "OCR_PROCESSOR". 
 # TODO(developer): Update and uncomment these variables before running the sample. 
 # project_id = "MY_PROJECT_ID" 
 # Processor ID as hexadecimal characters. 
 # Not to be confused with the Processor Display Name. 
 # processor_id = "MY_PROCESSOR_ID" 
 # Processor location. For example: "us" or "eu". 
 # location = "MY_PROCESSOR_LOCATION" 
 # Path for file to process. 
 # file_path = "/path/to/local/pdf" 
 # Set `api_endpoint` if you use a location other than "us". 
 opts 
 = 
 ClientOptions 
 ( 
 api_endpoint 
 = 
 f 
 " 
 { 
 location 
 } 
 -documentai.googleapis.com" 
 ) 
 # Initialize Document AI client. 
 client 
 = 
  documentai_v1 
 
 . 
  DocumentProcessorServiceClient 
 
 ( 
 client_options 
 = 
 opts 
 ) 
 # Get the Fully-qualified Processor path. 
 full_processor_name 
 = 
 client 
 . 
  processor_path 
 
 ( 
 project_id 
 , 
 location 
 , 
 processor_id 
 ) 
 # Get a Processor reference. 
 request 
 = 
  documentai_v1 
 
 . 
  GetProcessorRequest 
 
 ( 
 name 
 = 
 full_processor_name 
 ) 
 processor 
 = 
 client 
 . 
  get_processor 
 
 ( 
 request 
 = 
 request 
 ) 
 # `processor.name` is the full resource name of the processor. 
 # For example: `projects/{project_id}/locations/{location}/processors/{processor_id}` 
 print 
 ( 
 f 
 "Processor Name: 
 { 
 processor 
 . 
 name 
 } 
 " 
 ) 
 # Read the file into memory. 
 with 
 open 
 ( 
 file_path 
 , 
 "rb" 
 ) 
 as 
 image 
 : 
 image_content 
 = 
 image 
 . 
 read 
 () 
 # Load binary data. 
 # For supported MIME types, refer to https://cloud.google.com/document-ai/docs/file-types 
 raw_document 
 = 
  documentai_v1 
 
 . 
  RawDocument 
 
 ( 
 content 
 = 
 image_content 
 , 
 mime_type 
 = 
 "application/pdf" 
 , 
 ) 
 # Send a request and get the processed document. 
 request 
 = 
  documentai_v1 
 
 . 
  ProcessRequest 
 
 ( 
 name 
 = 
 processor 
 . 
 name 
 , 
 raw_document 
 = 
 raw_document 
 ) 
 result 
 = 
 client 
 . 
  process_document 
 
 ( 
 request 
 = 
 request 
 ) 
 document 
 = 
 result 
 . 
  document 
 
 # Read the text recognition output from the processor. 
 # For a full list of `Document` object attributes, reference this page: 
 # https://cloud.google.com/document-ai/docs/reference/rest/v1/Document 
 print 
 ( 
 "The document contains the following text:" 
 ) 
 print 
 ( 
  document 
 
 . 
  text 
 
 ) 
 

Ruby

For more information, see the Document AI Ruby API reference documentation .

To authenticate to Document AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  require 
  
 "google/cloud/document_ai/v1" 
 ## 
 # Document AI quickstart 
 # 
 # @param project_id [String] Your Google Cloud project (e.g. "my-project") 
 # @param location_id [String] Your Processor Location (e.g. "us") 
 # @param processor_id [String] Your Processor ID (e.g. "a14dae8f043b60bd") 
 # @param file_path [String] Path to Local File (e.g. "invoice.pdf") 
 # @param mime_type [String] Refer to https://cloud.google.com/document-ai/docs/file-types (e.g. "application/pdf") 
 # 
 def 
  
 quickstart 
  
 project_id 
 :, 
  
 location_id 
 :, 
  
 processor_id 
 :, 
  
 file_path 
 :, 
  
 mime_type 
 : 
  
 # Create the Document AI client. 
  
 client 
  
 = 
  
 :: 
 Google 
 :: 
 Cloud 
 :: 
 DocumentAI 
 :: 
 V1 
 :: 
 DocumentProcessorService 
 :: 
 Client 
 . 
 new 
  
 do 
  
 | 
 config 
 | 
  
 config 
 . 
 endpoint 
  
 = 
  
 " 
 #{ 
 location_id 
 } 
 -documentai.googleapis.com" 
  
 end 
  
 # Build the resource name from the project. 
  
 name 
  
 = 
  
 client 
 . 
 processor_path 
 ( 
  
 project 
 : 
  
 project_id 
 , 
  
 location 
 : 
  
 location_id 
 , 
  
 processor 
 : 
  
 processor_id 
  
 ) 
  
 # Read the bytes into memory 
  
 content 
  
 = 
  
 File 
 . 
 binread 
  
 file_path 
  
 # Create request 
  
 request 
  
 = 
  
 Google 
 :: 
 Cloud 
 :: 
 DocumentAI 
 :: 
 V1 
 :: 
 ProcessRequest 
 . 
 new 
 ( 
  
 skip_human_review 
 : 
  
 true 
 , 
  
 name 
 : 
  
 name 
 , 
  
 raw_document 
 : 
  
 { 
  
 content 
 : 
  
 content 
 , 
  
 mime_type 
 : 
  
 mime_type 
  
 } 
  
 ) 
  
 # Process document 
  
 response 
  
 = 
  
 client 
 . 
 process_document 
  
 request 
  
 # Handle response 
  
 puts 
  
 response 
 . 
 document 
 . 
 text 
 end 
 
Congratulations! You've sent your first request to Document AI.

How did it go?

Clean up

To avoid incurring charges to your Google Account for the resources used in this quickstart:

What's next

Find out more about our Document AI API Client Libraries .

Create a Mobile Website
View Site in Mobile | Classic
Share by: