ee.Clusterer.wekaCascadeKMeans

Cascade simple k-means selects the best k according to the Calinski-Harabasz criterion. For more information see:

Calinski, T. and J. Harabasz. 1974. A dendrite method for cluster analysis. Commun. Stat. 3: 1-27.

Usage Returns
ee.Clusterer.wekaCascadeKMeans( minClusters , maxClusters , restarts , manual , init , distanceFunction , maxIterations ) Clusterer
Argument Type Details
minClusters
Integer, default: 2 Min number of clusters.
maxClusters
Integer, default: 10 Max number of clusters.
restarts
Integer, default: 10 Number of restarts.
manual
Boolean, default: false Manually select the number of clusters.
init
Boolean, default: false Set whether to initialize using the probabilistic farthest first like method of the k-means++ algorithm (rather than the standard random selection of initial cluster centers).
distanceFunction
String, default: "Euclidean" Distance function to use. Options are: Euclidean and Manhattan.
maxIterations
Integer, default: null Maximum number of iterations for k-means.
Create a Mobile Website
View Site in Mobile | Classic
Share by: