Set whether to initialize using the probabilistic farthest first like method of the k-means++ algorithm (rather than the standard random selection of initial cluster centers).
distanceFunction
String, default: "Euclidean"
Distance function to use. Options are: Euclidean and Manhattan.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-09-19 UTC."],[[["\u003cp\u003eCascade simple k-means automatically determines the optimal number of clusters (k) within a specified range using the Calinski-Harabasz criterion.\u003c/p\u003e\n"],["\u003cp\u003eUsers can customize the clustering process by defining the minimum and maximum number of clusters, the number of algorithm restarts, initialization methods, distance functions, and the maximum number of iterations.\u003c/p\u003e\n"],["\u003cp\u003eThis Weka-based clusterer offers flexibility by allowing users to either automatically or manually select the number of clusters for their analysis.\u003c/p\u003e\n"],["\u003cp\u003eThe underlying algorithm leverages either Euclidean or Manhattan distance metrics to measure similarity between data points for cluster assignments.\u003c/p\u003e\n"]]],[],null,["# ee.Clusterer.wekaCascadeKMeans\n\nCascade simple k-means selects the best k according to the Calinski-Harabasz criterion. For more information see:\n\n\u003cbr /\u003e\n\nCalinski, T. and J. Harabasz. 1974. A dendrite method for cluster analysis. Commun. Stat. 3: 1-27.\n\n| Usage | Returns |\n|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|\n| `ee.Clusterer.wekaCascadeKMeans(`*minClusters* `, `*maxClusters* `, `*restarts* `, `*manual* `, `*init* `, `*distanceFunction* `, `*maxIterations*`)` | Clusterer |\n\n| Argument | Type | Details |\n|--------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `minClusters` | Integer, default: 2 | Min number of clusters. |\n| `maxClusters` | Integer, default: 10 | Max number of clusters. |\n| `restarts` | Integer, default: 10 | Number of restarts. |\n| `manual` | Boolean, default: false | Manually select the number of clusters. |\n| `init` | Boolean, default: false | Set whether to initialize using the probabilistic farthest first like method of the k-means++ algorithm (rather than the standard random selection of initial cluster centers). |\n| `distanceFunction` | String, default: \"Euclidean\" | Distance function to use. Options are: Euclidean and Manhattan. |\n| `maxIterations` | Integer, default: null | Maximum number of iterations for k-means. |"]]