ee.Clusterer.wekaXMeans

X-Means is K-Means with an efficient estimation of the number of clusters. For more information see:

Dan Pelleg, Andrew W. Moore: X-means: Extending K-means with Efficient Estimation of the Number of Clusters. In: Seventeenth International Conference on Machine Learning, 727-734, 2000.

Usage Returns
ee.Clusterer.wekaXMeans( minClusters , maxClusters , maxIterations , maxKMeans , maxForChildren , useKD , cutoffFactor , distanceFunction , seed ) Clusterer
Argument Type Details
minClusters
Integer, default: 2 Minimum number of clusters.
maxClusters
Integer, default: 8 Maximum number of clusters.
maxIterations
Integer, default: 3 Maximum number of overall iterations.
maxKMeans
Integer, default: 1000 The maximum number of iterations to perform in KMeans.
maxForChildren
Integer, default: 1000 The maximum number of iterations in KMeans that is performed on the child centers.
useKD
Boolean, default: false Use a KDTree.
cutoffFactor
Float, default: 0 Takes the given percentage of the split centroids if none of the children win.
distanceFunction
String, default: "Euclidean" Distance function to use. Options are: Chebyshev, Euclidean, and Manhattan.
seed
Integer, default: 10 The randomization seed.
Create a Mobile Website
View Site in Mobile | Classic
Share by: