Load contents of a pandas DataFrame to a table.
Code sample
Python
Before trying this sample, follow the Python setup instructions in the BigQuery quickstart using client libraries . For more information, see the BigQuery Python API reference documentation .
To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries .
import
datetime
from
google.cloud
import
bigquery
import
pandas
import
pytz
# Construct a BigQuery client object.
client
=
bigquery
.
Client
()
# TODO(developer): Set table_id to the ID of the table to create.
# table_id = "your-project.your_dataset.your_table_name"
records
=
[
{
"title"
:
"The Meaning of Life"
,
"release_year"
:
1983
,
"length_minutes"
:
112.5
,
"release_date"
:
pytz
.
timezone
(
"Europe/Paris"
)
.
localize
(
datetime
.
datetime
(
1983
,
5
,
9
,
13
,
0
,
0
))
.
astimezone
(
pytz
.
utc
),
# Assume UTC timezone when a datetime object contains no timezone.
"dvd_release"
:
datetime
.
datetime
(
2002
,
1
,
22
,
7
,
0
,
0
),
},
{
"title"
:
"Monty Python and the Holy Grail"
,
"release_year"
:
1975
,
"length_minutes"
:
91.5
,
"release_date"
:
pytz
.
timezone
(
"Europe/London"
)
.
localize
(
datetime
.
datetime
(
1975
,
4
,
9
,
23
,
59
,
2
))
.
astimezone
(
pytz
.
utc
),
"dvd_release"
:
datetime
.
datetime
(
2002
,
7
,
16
,
9
,
0
,
0
),
},
{
"title"
:
"Life of Brian"
,
"release_year"
:
1979
,
"length_minutes"
:
94.25
,
"release_date"
:
pytz
.
timezone
(
"America/New_York"
)
.
localize
(
datetime
.
datetime
(
1979
,
8
,
17
,
23
,
59
,
5
))
.
astimezone
(
pytz
.
utc
),
"dvd_release"
:
datetime
.
datetime
(
2008
,
1
,
14
,
8
,
0
,
0
),
},
{
"title"
:
"And Now for Something Completely Different"
,
"release_year"
:
1971
,
"length_minutes"
:
88.0
,
"release_date"
:
pytz
.
timezone
(
"Europe/London"
)
.
localize
(
datetime
.
datetime
(
1971
,
9
,
28
,
23
,
59
,
7
))
.
astimezone
(
pytz
.
utc
),
"dvd_release"
:
datetime
.
datetime
(
2003
,
10
,
22
,
10
,
0
,
0
),
},
]
dataframe
=
pandas
.
DataFrame
(
records
,
# In the loaded table, the column order reflects the order of the
# columns in the DataFrame.
columns
=
[
"title"
,
"release_year"
,
"length_minutes"
,
"release_date"
,
"dvd_release"
,
],
# Optionally, set a named index, which can also be written to the
# BigQuery table.
index
=
pandas
.
Index
(
[
"Q24980"
,
"Q25043"
,
"Q24953"
,
"Q16403"
],
name
=
"wikidata_id"
),
)
job_config
=
bigquery
.
LoadJobConfig
(
# Specify a (partial) schema. All columns are always written to the
# table. The schema is used to assist in data type definitions.
schema
=
[
# Specify the type of columns whose type cannot be auto-detected. For
# example the "title" column uses pandas dtype "object", so its
# data type is ambiguous.
bigquery
.
SchemaField
(
"title"
,
bigquery
.
enums
.
SqlTypeNames
.
STRING
),
# Indexes are written if included in the schema by name.
bigquery
.
SchemaField
(
"wikidata_id"
,
bigquery
.
enums
.
SqlTypeNames
.
STRING
),
],
# Optionally, set the write disposition. BigQuery appends loaded rows
# to an existing table by default, but with WRITE_TRUNCATE write
# disposition it replaces the table with the loaded data.
write_disposition
=
"WRITE_TRUNCATE"
,
)
job
=
client
.
load_table_from_dataframe
(
dataframe
,
table_id
,
job_config
=
job_config
)
# Make an API request.
job
.
result
()
# Wait for the job to complete.
table
=
client
.
get_table
(
table_id
)
# Make an API request.
print
(
"Loaded
{}
rows and
{}
columns to
{}
"
.
format
(
table
.
num_rows
,
len
(
table
.
schema
),
table_id
)
)
What's next
To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser .

