Class ARIMAPlus (0.17.0)

  ARIMAPlus 
 () 
 

Time Series ARIMA Plus model.

Methods

__repr__

  __repr__ 
 () 
 

Print the estimator's constructor with all non-default parameter values

fit

  fit 
 ( 
 X 
 : 
 typing 
 . 
 Union 
 [ 
 bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 ], 
 y 
 : 
 typing 
 . 
 Union 
 [ 
 bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 ], 
 ) 
 - 
> bigframes 
 . 
 ml 
 . 
 base 
 . 
 _T 
 

API documentation for fit method.

get_params

  get_params 
 ( 
 deep 
 : 
 bool 
 = 
 True 
 ) 
 - 
> typing 
 . 
 Dict 
 [ 
 str 
 , 
 typing 
 . 
 Any 
 ] 
 

Get parameters for this estimator.

Parameter
Name
Description
deep
bool, default True

Default True . If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns
Type
Description
Dictionary
A dictionary of parameter names mapped to their values.

predict

  predict 
 ( 
 X 
 = 
 None 
 , 
 horizon 
 : 
 int 
 = 
 3 
 , 
 confidence_level 
 : 
 float 
 = 
 0.95 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Predict the closest cluster for each sample in X.

Parameters
Name
Description
X
default None

ignored, to be compatible with other APIs.

confidence_level
float, default 0.95

a float value that specifies percentage of the future values that fall in the prediction interval. The valid input range is [0.0, 1.0).

Returns
Type
Description
The predicted DataFrames. Which contains 2 columns "forecast_timestamp" and "forecast_value".

register

  register 
 ( 
 vertex_ai_model_id 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 ) 
 - 
> bigframes 
 . 
 ml 
 . 
 base 
 . 
 _T 
 

Register the model to Vertex AI.

After register, go to Google Cloud Console ( https://console.cloud.google.com/vertex-ai/models ) to manage the model registries. Refer to https://cloud.google.com/vertex-ai/docs/model-registry/introduction for more options.

Parameter
Name
Description
vertex_ai_model_id
Optional[str], default None

optional string id as model id in Vertex. If not set, will by default to 'bigframes_{bq_model_id}'. Vertex Ai model id will be truncated to 63 characters due to its limitation.

score

  score 
 ( 
 X 
 : 
 typing 
 . 
 Union 
 [ 
 bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 ], 
 y 
 : 
 typing 
 . 
 Union 
 [ 
 bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 ], 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Calculate evaluation metrics of the model.

Parameters
Name
Description
X
bigframes.dataframe.DataFrame or bigframes.series.Series

A BigQuery DataFrame only contains 1 column as evaluation timestamp. The timestamp must be within the horizon of the model, which by default is 1000 data points.

y
bigframes.dataframe.DataFrame or bigframes.series.Series

A BigQuery DataFrame only contains 1 column as evaluation numeric values.

Returns
Type
Description
A DataFrame as evaluation result.

to_gbq

  to_gbq 
 ( 
 model_name 
 : 
 str 
 , 
 replace 
 : 
 bool 
 = 
 False 
 ) 
 - 
> bigframes 
 . 
 ml 
 . 
 forecasting 
 . 
 ARIMAPlus 
 

Save the model to BigQuery.

Parameters
Name
Description
model_name
str

the name of the model.

replace
bool, default False

whether to replace if the model already exists. Default to False.

Returns
Type
Description
ARIMAPlus
saved model.
Design a Mobile Site
View Site in Mobile | Classic
Share by: