Class ARIMAPlus (0.24.0)

  ARIMAPlus 
 () 
 

Time Series ARIMA Plus model.

Methods

__repr__

  __repr__ 
 () 
 

Print the estimator's constructor with all non-default parameter values

detect_anomalies

  detect_anomalies 
 ( 
 X 
 : 
 typing 
 . 
 Union 
 [ 
 bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 ], 
 * 
 , 
 anomaly_prob_threshold 
 : 
 float 
 = 
 0.95 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Detect the anomaly data points of the input.

Parameters
Name
Description
X
bigframes.dataframe.DataFrame or bigframes.series.Series

Series or a DataFrame to detect anomalies.

anomaly_prob_threshold
float, default 0.95

Identifies the custom threshold to use for anomaly detection. The value must be in the range [0, 1), with a default value of 0.95.

Returns
Type
Description
detected DataFrame.

fit

  fit 
 ( 
 X 
 : 
 typing 
 . 
 Union 
 [ 
 bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 ], 
 y 
 : 
 typing 
 . 
 Union 
 [ 
 bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 ], 
 ) 
 - 
> bigframes 
 . 
 ml 
 . 
 base 
 . 
 _T 
 

API documentation for fit method.

get_params

  get_params 
 ( 
 deep 
 : 
 bool 
 = 
 True 
 ) 
 - 
> typing 
 . 
 Dict 
 [ 
 str 
 , 
 typing 
 . 
 Any 
 ] 
 

Get parameters for this estimator.

Parameter
Name
Description
deep
bool, default True

Default True . If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns
Type
Description
Dictionary
A dictionary of parameter names mapped to their values.

predict

  predict 
 ( 
 X 
 = 
 None 
 , 
 * 
 , 
 horizon 
 : 
 int 
 = 
 3 
 , 
 confidence_level 
 : 
 float 
 = 
 0.95 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Predict the closest cluster for each sample in X.

Parameters
Name
Description
X
default None

ignored, to be compatible with other APIs.

confidence_level
float, default 0.95

a float value that specifies percentage of the future values that fall in the prediction interval. The valid input range is [0.0, 1.0).

Returns
Type
Description
The predicted DataFrames. Which contains 2 columns "forecast_timestamp" and "forecast_value".

register

  register 
 ( 
 vertex_ai_model_id 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 ) 
 - 
> bigframes 
 . 
 ml 
 . 
 base 
 . 
 _T 
 

Register the model to Vertex AI.

After register, go to Google Cloud Console ( https://console.cloud.google.com/vertex-ai/models ) to manage the model registries. Refer to https://cloud.google.com/vertex-ai/docs/model-registry/introduction for more options.

Parameter
Name
Description
vertex_ai_model_id
Optional[str], default None

optional string id as model id in Vertex. If not set, will by default to 'bigframes_{bq_model_id}'. Vertex Ai model id will be truncated to 63 characters due to its limitation.

score

  score 
 ( 
 X 
 : 
 typing 
 . 
 Union 
 [ 
 bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 ], 
 y 
 : 
 typing 
 . 
 Union 
 [ 
 bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 ], 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Calculate evaluation metrics of the model.

Parameters
Name
Description
X
bigframes.dataframe.DataFrame or bigframes.series.Series

A BigQuery DataFrame only contains 1 column as evaluation timestamp. The timestamp must be within the horizon of the model, which by default is 1000 data points.

y
bigframes.dataframe.DataFrame or bigframes.series.Series

A BigQuery DataFrame only contains 1 column as evaluation numeric values.

Returns
Type
Description
A DataFrame as evaluation result.

summary

  summary 
 ( 
 show_all_candidate_models 
 : 
 bool 
 = 
 False 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Summary of the evaluation metrics of the time series model.

Parameter
Name
Description
show_all_candidate_models
bool, default to False

Whether to show evaluation metrics or an error message for either all candidate models or for only the best model with the lowest AIC. Default to False.

Returns
Type
Description
A DataFrame as evaluation result.

to_gbq

  to_gbq 
 ( 
 model_name 
 : 
 str 
 , 
 replace 
 : 
 bool 
 = 
 False 
 ) 
 - 
> bigframes 
 . 
 ml 
 . 
 forecasting 
 . 
 ARIMAPlus 
 

Save the model to BigQuery.

Parameters
Name
Description
model_name
str

the name of the model.

replace
bool, default False

whether to replace if the model already exists. Default to False.

Returns
Type
Description
ARIMAPlus
saved model.
Design a Mobile Site
View Site in Mobile | Classic
Share by: