Getting started with Spanner in Node.js


Objectives

This tutorial walks you through the following steps using the Spanner client library for Node.js:

  • Create a Spanner instance and database.
  • Write, read, and execute SQL queries on data in the database.
  • Update the database schema.
  • Update data using a read-write transaction.
  • Add a secondary index to the database.
  • Use the index to read and execute SQL queries on data.
  • Retrieve data using a read-only transaction.

Costs

This tutorial uses Spanner, which is a billable component of the Google Cloud. For information on the cost of using Spanner, see Pricing .

Before you begin

Complete the steps described in Set up , which cover creating and setting a default Google Cloud project, enabling billing, enabling the Cloud Spanner API, and setting up OAuth 2.0 to get authentication credentials to use the Cloud Spanner API.

In particular, make sure that you run gcloud auth application-default login to set up your local development environment with authentication credentials.

Prepare your local Node.js environment

  1. Follow the steps to Set Up a Node.js Development Environment

  2. Clone the sample app repository to your local machine:

      git 
      
     clone 
      
     https 
     : 
     //github.com/googleapis/nodejs-spanner 
     
    

    Alternatively, you can download the sample as a zip file and extract it.

  3. Change to the directory that contains the Spanner sample code:

      cd 
      
     samples 
     / 
     
    
  4. Install dependencies using npm :

      npm 
      
     install 
     
    

Create an instance

When you first use Spanner, you must create an instance, which is an allocation of resources that are used by Spanner databases. When you create an instance, you choose an instance configuration , which determines where your data is stored, and also the number of nodes to use, which determines the amount of serving and storage resources in your instance.

See Create an instance to learn how to create a Spanner instance using any of the following methods. You can name your instance test-instance to use it with other topics in this document that reference an instance named test-instance .

  • The Google Cloud CLI
  • The Google Cloud console
  • A client library (C++, C#, Go, Java, Node.js, PHP, Python, or Ruby)

Look through sample files

The samples repository contains a sample that shows how to use Spanner with Node.js.

Take a look through the samples/schema.js file, which shows how to create a database and modify a database schema. The data uses the example schema shown in the Schema and data model page.

Create a database

GoogleSQL

node  
schema.js  
createDatabase  
test-instance  
example-db  
 MY_PROJECT_ID 

PostgreSQL

node  
schema.js  
createPgDatabase  
test-instance  
example-db  
 MY_PROJECT_ID 

You should see:

  Created 
  
 database 
  
 example 
 - 
 db 
  
 on 
  
 instance 
  
 test 
 - 
 instance 
 . 
 
The following code creates a database and two tables in the database.

GoogleSQL

  /** 
 * TODO(developer): Uncomment the following lines before running the sample. 
 */ 
 // const projectId = 'my-project-id'; 
 // const instanceId = 'my-instance'; 
 // const databaseId = 'my-database'; 
 // Imports the Google Cloud client library 
 const 
  
 { 
 Spanner 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/spanner 
' 
 ); 
 // creates a client 
 const 
  
 spanner 
  
 = 
  
 new 
  
  Spanner 
 
 ({ 
  
 projectId 
 : 
  
 projectID 
 , 
 }); 
 const 
  
 databaseAdminClient 
  
 = 
  
 spanner 
 . 
  getDatabaseAdminClient 
 
 (); 
 const 
  
 createSingersTableStatement 
  
 = 
  
 ` 
 CREATE TABLE Singers ( 
 SingerId    INT64 NOT NULL, 
 FirstName   STRING(1024), 
 LastName    STRING(1024), 
 SingerInfo  BYTES(MAX), 
 FullName    STRING(2048) AS (ARRAY_TO_STRING([FirstName, LastName], " ")) STORED, 
 ) PRIMARY KEY (SingerId)` 
 ; 
 const 
  
 createAlbumsTableStatement 
  
 = 
  
 ` 
 CREATE TABLE Albums ( 
 SingerId    INT64 NOT NULL, 
 AlbumId     INT64 NOT NULL, 
 AlbumTitle  STRING(MAX) 
 ) PRIMARY KEY (SingerId, AlbumId), 
 INTERLEAVE IN PARENT Singers ON DELETE CASCADE` 
 ; 
 // Creates a new database 
 try 
  
 { 
  
 const 
  
 [ 
 operation 
 ] 
  
 = 
  
 await 
  
 databaseAdminClient 
 . 
 createDatabase 
 ({ 
  
 createStatement 
 : 
  
 'CREATE DATABASE `' 
  
 + 
  
 databaseID 
  
 + 
  
 '`' 
 , 
  
 extraStatements 
 : 
  
 [ 
  
 createSingersTableStatement 
 , 
  
 createAlbumsTableStatement 
 , 
  
 ], 
  
 parent 
 : 
  
 databaseAdminClient 
 . 
 instancePath 
 ( 
 projectID 
 , 
  
 instanceID 
 ), 
  
 }); 
  
 console 
 . 
 log 
 ( 
 `Waiting for creation of 
 ${ 
 databaseID 
 } 
 to complete...` 
 ); 
  
 await 
  
  operation 
 
 . 
 promise 
 (); 
  
 console 
 . 
 log 
 ( 
 `Created database 
 ${ 
 databaseID 
 } 
 on instance 
 ${ 
 instanceID 
 } 
 .` 
 ); 
 } 
  
 catch 
  
 ( 
 err 
 ) 
  
 { 
  
 console 
 . 
 error 
 ( 
 'ERROR:' 
 , 
  
 err 
 ); 
 } 
 

PostgreSQL

  /** 
 * TODO(developer): Uncomment these variables before running the sample. 
 */ 
 // const instanceId = 'my-instance'; 
 // const databaseId = 'my-database'; 
 // const projectId = 'my-project-id'; 
 // Imports the Google Cloud client library 
 const 
  
 { 
 Spanner 
 , 
  
 protos 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/spanner 
' 
 ); 
 // creates a client 
 const 
  
 spanner 
  
 = 
  
 new 
  
  Spanner 
 
 ({ 
  
 projectId 
 : 
  
 projectId 
 , 
 }); 
 const 
  
 databaseAdminClient 
  
 = 
  
 spanner 
 . 
  getDatabaseAdminClient 
 
 (); 
 async 
  
 function 
  
 createPgDatabase 
 () 
  
 { 
  
 // Creates a PostgreSQL database. PostgreSQL create requests may not contain any additional 
  
 // DDL statements. We need to execute these separately after the database has been created. 
  
 const 
  
 [ 
 operationCreate 
 ] 
  
 = 
  
 await 
  
 databaseAdminClient 
 . 
 createDatabase 
 ({ 
  
 createStatement 
 : 
  
 'CREATE DATABASE "' 
  
 + 
  
 databaseId 
  
 + 
  
 '"' 
 , 
  
 parent 
 : 
  
 databaseAdminClient 
 . 
 instancePath 
 ( 
 projectId 
 , 
  
 instanceId 
 ), 
  
 databaseDialect 
 : 
  
 protos 
 . 
 google 
 . 
 spanner 
 . 
 admin 
 . 
 database 
 . 
 v1 
 . 
  DatabaseDialect 
 
 . 
  POSTGRESQL 
 
 , 
  
 }); 
  
 console 
 . 
 log 
 ( 
 `Waiting for operation on 
 ${ 
 databaseId 
 } 
 to complete...` 
 ); 
  
 await 
  
 operationCreate 
 . 
 promise 
 (); 
  
 const 
  
 [ 
 metadata 
 ] 
  
 = 
  
 await 
  
 databaseAdminClient 
 . 
 getDatabase 
 ({ 
  
 name 
 : 
  
 databaseAdminClient 
 . 
 databasePath 
 ( 
 projectId 
 , 
  
 instanceId 
 , 
  
 databaseId 
 ), 
  
 }); 
  
 console 
 . 
 log 
 ( 
  
 `Created database 
 ${ 
 databaseId 
 } 
 on instance 
 ${ 
 instanceId 
 } 
 with dialect 
 ${ 
 metadata 
 . 
 databaseDialect 
 } 
 .` 
 , 
  
 ); 
  
 // Create a couple of tables using a separate request. We must use PostgreSQL style DDL as the 
  
 // database has been created with the PostgreSQL dialect. 
  
 const 
  
 statements 
  
 = 
  
 [ 
  
 `CREATE TABLE Singers 
 (SingerId   bigint NOT NULL, 
 FirstName   varchar(1024), 
 LastName    varchar(1024), 
 SingerInfo  bytea, 
 FullName    character varying(2048) GENERATED ALWAYS AS (FirstName || ' ' || LastName) STORED, 
 PRIMARY KEY (SingerId) 
 ); 
 CREATE TABLE Albums 
 (AlbumId    bigint NOT NULL, 
 SingerId    bigint NOT NULL REFERENCES Singers (SingerId), 
 AlbumTitle  text, 
 PRIMARY KEY (AlbumId) 
 );` 
 , 
  
 ]; 
  
 const 
  
 [ 
 operationUpdateDDL 
 ] 
  
 = 
  
 await 
  
 databaseAdminClient 
 . 
 updateDatabaseDdl 
 ({ 
  
 database 
 : 
  
 databaseAdminClient 
 . 
 databasePath 
 ( 
  
 projectId 
 , 
  
 instanceId 
 , 
  
 databaseId 
 , 
  
 ), 
  
 statements 
 : 
  
 [ 
 statements 
 ], 
  
 }); 
  
 await 
  
 operationUpdateDDL 
 . 
 promise 
 (); 
  
 console 
 . 
 log 
 ( 
 'Updated schema' 
 ); 
 } 
 createPgDatabase 
 (); 
 

The next step is to write data to your database.

Create a database client

Before you can do reads or writes, you must create a Database :
  // Imports the Google Cloud client library 
 const 
  
 { 
 Spanner 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/spanner 
' 
 ); 
 // Creates a client 
 const 
  
 spanner 
  
 = 
  
 new 
  
  Spanner 
 
 ({ 
 projectId 
 }); 
 // Gets a reference to a Cloud Spanner instance and database 
 const 
  
 instance 
  
 = 
  
 spanner 
 . 
 instance 
 ( 
 instanceId 
 ); 
 const 
  
 database 
  
 = 
  
 instance 
 . 
 database 
 ( 
 databaseId 
 ); 
 // The query to execute 
 const 
  
 query 
  
 = 
  
 { 
  
 sql 
 : 
  
 'SELECT 1' 
 , 
 }; 
 // Execute a simple SQL statement 
 const 
  
 [ 
 rows 
 ] 
  
 = 
  
 await 
  
 database 
 . 
 run 
 ( 
 query 
 ); 
 console 
 . 
 log 
 ( 
 `Query: 
 ${ 
 rows 
 . 
 length 
 } 
 found.` 
 ); 
 rows 
 . 
 forEach 
 ( 
 row 
  
 = 
>  
 console 
 . 
 log 
 ( 
 row 
 )); 
 

You can think of a Database as a database connection: all of your interactions with Spanner must go through a Database . Typically you create a Database when your application starts up, then you re-use that Database to read, write, and execute transactions. Each client uses resources in Spanner.

If you create multiple clients in the same app, you should call Database.close() to clean up the client's resources, including network connections, as soon as it is no longer needed.

Read more in the Database reference.

Write data with DML

You can insert data using Data Manipulation Language (DML) in a read-write transaction.

You use the runUpdate() method to execute a DML statement.

  // Imports the Google Cloud client library 
 const 
  
 { 
 Spanner 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/spanner 
' 
 ); 
 /** 
 * TODO(developer): Uncomment the following lines before running the sample. 
 */ 
 // const projectId = 'my-project-id'; 
 // const instanceId = 'my-instance'; 
 // const databaseId = 'my-database'; 
 // Creates a client 
 const 
  
 spanner 
  
 = 
  
 new 
  
  Spanner 
 
 ({ 
  
 projectId 
 : 
  
 projectId 
 , 
 }); 
 // Gets a reference to a Cloud Spanner instance and database 
 const 
  
 instance 
  
 = 
  
 spanner 
 . 
 instance 
 ( 
 instanceId 
 ); 
 const 
  
 database 
  
 = 
  
 instance 
 . 
 database 
 ( 
 databaseId 
 ); 
 database 
 . 
  runTransaction 
 
 ( 
 async 
  
 ( 
 err 
 , 
  
 transaction 
 ) 
  
 = 
>  
 { 
  
 if 
  
 ( 
 err 
 ) 
  
 { 
  
 console 
 . 
 error 
 ( 
 err 
 ); 
  
 return 
 ; 
  
 } 
  
 try 
  
 { 
  
 const 
  
 [ 
 rowCount 
 ] 
  
 = 
  
 await 
  
 transaction 
 . 
  runUpdate 
 
 ({ 
  
 sql 
 : 
  
 `INSERT Singers (SingerId, FirstName, LastName) VALUES 
 (12, 'Melissa', 'Garcia'), 
 (13, 'Russell', 'Morales'), 
 (14, 'Jacqueline', 'Long'), 
 (15, 'Dylan', 'Shaw')` 
 , 
  
 }); 
  
 console 
 . 
 log 
 ( 
 ` 
 ${ 
 rowCount 
 } 
 records inserted.` 
 ); 
  
 await 
  
 transaction 
 . 
 commit 
 (); 
  
 } 
  
 catch 
  
 ( 
 err 
 ) 
  
 { 
  
 console 
 . 
 error 
 ( 
 'ERROR:' 
 , 
  
 err 
 ); 
  
 } 
  
 finally 
  
 { 
  
 // Close the database when finished. 
  
 database 
 . 
 close 
 (); 
  
 } 
 }); 
 

Run the sample using the writeUsingDml argument.

node  
dml.js  
writeUsingDml  
test-instance  
example-db  
 MY_PROJECT_ID 

You should see:

  4 
  
 records 
  
 inserted 
 . 
 

Write data with mutations

You can also insert data using mutations .

You write data using a Table object. The Table.insert() method adds new rows to the table. All inserts in a single batch are applied atomically.

This code shows how to write the data using mutations:

  // Imports the Google Cloud client library 
 const 
  
 { 
 Spanner 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/spanner 
' 
 ); 
 /** 
 * TODO(developer): Uncomment the following lines before running the sample. 
 */ 
 // const projectId = 'my-project-id'; 
 // const instanceId = 'my-instance'; 
 // const databaseId = 'my-database'; 
 // Creates a client 
 const 
  
 spanner 
  
 = 
  
 new 
  
  Spanner 
 
 ({ 
  
 projectId 
 : 
  
 projectId 
 , 
 }); 
 // Gets a reference to a Cloud Spanner instance and database 
 const 
  
 instance 
  
 = 
  
 spanner 
 . 
 instance 
 ( 
 instanceId 
 ); 
 const 
  
 database 
  
 = 
  
 instance 
 . 
 database 
 ( 
 databaseId 
 ); 
 // Instantiate Spanner table objects 
 const 
  
 singersTable 
  
 = 
  
 database 
 . 
 table 
 ( 
 'Singers' 
 ); 
 const 
  
 albumsTable 
  
 = 
  
 database 
 . 
 table 
 ( 
 'Albums' 
 ); 
 // Inserts rows into the Singers table 
 // Note: Cloud Spanner interprets Node.js numbers as FLOAT64s, so 
 // they must be converted to strings before being inserted as INT64s 
 try 
  
 { 
  
 await 
  
 singersTable 
 . 
 insert 
 ([ 
  
 { 
 SingerId 
 : 
  
 '1' 
 , 
  
 FirstName 
 : 
  
 'Marc' 
 , 
  
 LastName 
 : 
  
 'Richards' 
 }, 
  
 { 
 SingerId 
 : 
  
 '2' 
 , 
  
 FirstName 
 : 
  
 'Catalina' 
 , 
  
 LastName 
 : 
  
 'Smith' 
 }, 
  
 { 
 SingerId 
 : 
  
 '3' 
 , 
  
 FirstName 
 : 
  
 'Alice' 
 , 
  
 LastName 
 : 
  
 'Trentor' 
 }, 
  
 { 
 SingerId 
 : 
  
 '4' 
 , 
  
 FirstName 
 : 
  
 'Lea' 
 , 
  
 LastName 
 : 
  
 'Martin' 
 }, 
  
 { 
 SingerId 
 : 
  
 '5' 
 , 
  
 FirstName 
 : 
  
 'David' 
 , 
  
 LastName 
 : 
  
 'Lomond' 
 }, 
  
 ]); 
  
 await 
  
 albumsTable 
 . 
 insert 
 ([ 
  
 { 
 SingerId 
 : 
  
 '1' 
 , 
  
 AlbumId 
 : 
  
 '1' 
 , 
  
 AlbumTitle 
 : 
  
 'Total Junk' 
 }, 
  
 { 
 SingerId 
 : 
  
 '1' 
 , 
  
 AlbumId 
 : 
  
 '2' 
 , 
  
 AlbumTitle 
 : 
  
 'Go, Go, Go' 
 }, 
  
 { 
 SingerId 
 : 
  
 '2' 
 , 
  
 AlbumId 
 : 
  
 '1' 
 , 
  
 AlbumTitle 
 : 
  
 'Green' 
 }, 
  
 { 
 SingerId 
 : 
  
 '2' 
 , 
  
 AlbumId 
 : 
  
 '2' 
 , 
  
 AlbumTitle 
 : 
  
 'Forever Hold your Peace' 
 }, 
  
 { 
 SingerId 
 : 
  
 '2' 
 , 
  
 AlbumId 
 : 
  
 '3' 
 , 
  
 AlbumTitle 
 : 
  
 'Terrified' 
 }, 
  
 ]); 
  
 console 
 . 
 log 
 ( 
 'Inserted data.' 
 ); 
 } 
  
 catch 
  
 ( 
 err 
 ) 
  
 { 
  
 console 
 . 
 error 
 ( 
 'ERROR:' 
 , 
  
 err 
 ); 
 } 
  
 finally 
  
 { 
  
 await 
  
 database 
 . 
 close 
 (); 
 } 
 

Run the sample using the insert argument.

node  
crud.js  
insert  
test-instance  
example-db  
 MY_PROJECT_ID 

You should see:

  Inserted 
  
 data 
 . 
 

Query data using SQL

Spanner supports a SQL interface for reading data, which you can access on the command line using the Google Cloud CLI or programmatically using the Spanner client library for Node.js.

On the command line

Execute the following SQL statement to read the values of all columns from the Albums table:

  gcloud 
  
 spanner 
  
 databases 
  
 execute 
 - 
 sql 
  
 example 
 - 
 db 
  
 -- 
 instance 
 = 
 test 
 - 
 instance 
  
 \ 
  
 -- 
 sql 
 = 
 'SELECT SingerId, AlbumId, AlbumTitle FROM Albums' 
 

The result shows:

  SingerId 
  
 AlbumId 
  
 AlbumTitle 
 1 
  
 1 
  
 Total 
  
 Junk 
 1 
  
 2 
  
 Go 
 , 
  
 Go 
 , 
  
 Go 
 2 
  
 1 
  
 Green 
 2 
  
 2 
  
 Forever 
  
 Hold 
  
 Your 
  
 Peace 
 2 
  
 3 
  
 Terrified 
 

Use the Spanner client library for Node.js

In addition to executing a SQL statement on the command line, you can issue the same SQL statement programmatically using the Spanner client library for Node.js.

Use Database.run() to run the SQL query.

  // Imports the Google Cloud client library 
 const 
  
 { 
 Spanner 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/spanner 
' 
 ); 
 /** 
 * TODO(developer): Uncomment the following lines before running the sample. 
 */ 
 // const projectId = 'my-project-id'; 
 // const instanceId = 'my-instance'; 
 // const databaseId = 'my-database'; 
 // Creates a client 
 const 
  
 spanner 
  
 = 
  
 new 
  
  Spanner 
 
 ({ 
  
 projectId 
 : 
  
 projectId 
 , 
 }); 
 // Gets a reference to a Cloud Spanner instance and database 
 const 
  
 instance 
  
 = 
  
 spanner 
 . 
 instance 
 ( 
 instanceId 
 ); 
 const 
  
 database 
  
 = 
  
 instance 
 . 
 database 
 ( 
 databaseId 
 ); 
 const 
  
 query 
  
 = 
  
 { 
  
 sql 
 : 
  
 'SELECT SingerId, AlbumId, AlbumTitle FROM Albums' 
 , 
 }; 
 // Queries rows from the Albums table 
 try 
  
 { 
  
 const 
  
 [ 
 rows 
 ] 
  
 = 
  
 await 
  
 database 
 . 
 run 
 ( 
 query 
 ); 
  
 rows 
 . 
 forEach 
 ( 
 row 
  
 = 
>  
 { 
  
 const 
  
 json 
  
 = 
  
 row 
 . 
 toJSON 
 (); 
  
 console 
 . 
 log 
 ( 
  
 `SingerId: 
 ${ 
 json 
 . 
 SingerId 
 } 
 , AlbumId: 
 ${ 
 json 
 . 
 AlbumId 
 } 
 , AlbumTitle: 
 ${ 
 json 
 . 
 AlbumTitle 
 } 
 ` 
 , 
  
 ); 
  
 }); 
 } 
  
 catch 
  
 ( 
 err 
 ) 
  
 { 
  
 console 
 . 
 error 
 ( 
 'ERROR:' 
 , 
  
 err 
 ); 
 } 
  
 finally 
  
 { 
  
 // Close the database when finished. 
  
 await 
  
 database 
 . 
 close 
 (); 
 } 
 

Here's how to issue the query and access the data:

node  
crud.js  
query  
test-instance  
example-db  
 MY_PROJECT_ID 

You should see the following result:

  SingerId 
 : 
  
 1 
 , 
  
 AlbumId 
 : 
  
 1 
 , 
  
 AlbumTitle 
 : 
  
 Total 
  
 Junk 
 SingerId 
 : 
  
 1 
 , 
  
 AlbumId 
 : 
  
 2 
 , 
  
 AlbumTitle 
 : 
  
 Go 
 , 
  
 Go 
 , 
  
 Go 
 SingerId 
 : 
  
 2 
 , 
  
 AlbumId 
 : 
  
 1 
 , 
  
 AlbumTitle 
 : 
  
 Green 
 SingerId 
 : 
  
 2 
 , 
  
 AlbumId 
 : 
  
 2 
 , 
  
 AlbumTitle 
 : 
  
 Forever 
  
 Hold 
  
 your 
  
 Peace 
 SingerId 
 : 
  
 2 
 , 
  
 AlbumId 
 : 
  
 3 
 , 
  
 AlbumTitle 
 : 
  
 Terrified 
 

Query using a SQL parameter

If your application has a frequently executed query, you can improve its performance by parameterizing it. The resulting parametric query can be cached and reused, which reduces compilation costs. For more information, see Use query parameters to speed up frequently executed queries .

Here is an example of using a parameter in the WHERE clause to query records containing a specific value for LastName .

  // Imports the Google Cloud client library 
 const 
  
 { 
 Spanner 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/spanner 
' 
 ); 
 /** 
 * TODO(developer): Uncomment the following lines before running the sample. 
 */ 
 // const projectId = 'my-project-id'; 
 // const instanceId = 'my-instance'; 
 // const databaseId = 'my-database'; 
 // Creates a client 
 const 
  
 spanner 
  
 = 
  
 new 
  
  Spanner 
 
 ({ 
  
 projectId 
 : 
  
 projectId 
 , 
 }); 
 // Gets a reference to a Cloud Spanner instance and database 
 const 
  
 instance 
  
 = 
  
 spanner 
 . 
 instance 
 ( 
 instanceId 
 ); 
 const 
  
 database 
  
 = 
  
 instance 
 . 
 database 
 ( 
 databaseId 
 ); 
 const 
  
 query 
  
 = 
  
 { 
  
 sql 
 : 
  
 `SELECT SingerId, FirstName, LastName 
 FROM Singers WHERE LastName = @lastName` 
 , 
  
 params 
 : 
  
 { 
  
 lastName 
 : 
  
 'Garcia' 
 , 
  
 }, 
 }; 
 // Queries rows from the Albums table 
 try 
  
 { 
  
 const 
  
 [ 
 rows 
 ] 
  
 = 
  
 await 
  
 database 
 . 
 run 
 ( 
 query 
 ); 
  
 rows 
 . 
 forEach 
 ( 
 row 
  
 = 
>  
 { 
  
 const 
  
 json 
  
 = 
  
 row 
 . 
 toJSON 
 (); 
  
 console 
 . 
 log 
 ( 
  
 `SingerId: 
 ${ 
 json 
 . 
 SingerId 
 } 
 , FirstName: 
 ${ 
 json 
 . 
 FirstName 
 } 
 , LastName: 
 ${ 
 json 
 . 
 LastName 
 } 
 ` 
 , 
  
 ); 
  
 }); 
 } 
  
 catch 
  
 ( 
 err 
 ) 
  
 { 
  
 console 
 . 
 error 
 ( 
 'ERROR:' 
 , 
  
 err 
 ); 
 } 
  
 finally 
  
 { 
  
 // Close the database when finished. 
  
 database 
 . 
 close 
 (); 
 } 
 

Here's how to issue the query and access the data:

  node 
  
 dml 
 . 
 js 
  
 queryWithParameter 
  
 test 
 - 
 instance 
  
 example 
 - 
 db 
  
 MY_PROJECT_ID 
 

You should see the following result:

  SingerId 
 : 
  
 12 
 , 
  
 FirstName 
 : 
  
 Melissa 
 , 
  
 LastName 
 : 
  
 Garcia 
 

Read data using the read API

In addition to Spanner's SQL interface, Spanner also supports a read interface.

Use Table.read() to read rows from the database. Use a KeySet object to define a collection of keys and key ranges to read.

Here's how to read the data:

  // Imports the Google Cloud client library 
 const 
  
 { 
 Spanner 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/spanner 
' 
 ); 
 /** 
 * TODO(developer): Uncomment the following lines before running the sample. 
 */ 
 // const projectId = 'my-project-id'; 
 // const instanceId = 'my-instance'; 
 // const databaseId = 'my-database'; 
 // Creates a client 
 const 
  
 spanner 
  
 = 
  
 new 
  
  Spanner 
 
 ({ 
  
 projectId 
 : 
  
 projectId 
 , 
 }); 
 // Gets a reference to a Cloud Spanner instance and database 
 const 
  
 instance 
  
 = 
  
 spanner 
 . 
 instance 
 ( 
 instanceId 
 ); 
 const 
  
 database 
  
 = 
  
 instance 
 . 
 database 
 ( 
 databaseId 
 ); 
 // Reads rows from the Albums table 
 const 
  
 albumsTable 
  
 = 
  
 database 
 . 
 table 
 ( 
 'Albums' 
 ); 
 const 
  
 query 
  
 = 
  
 { 
  
 columns 
 : 
  
 [ 
 'SingerId' 
 , 
  
 'AlbumId' 
 , 
  
 'AlbumTitle' 
 ], 
  
 keySet 
 : 
  
 { 
  
 all 
 : 
  
 true 
 , 
  
 }, 
 }; 
 try 
  
 { 
  
 const 
  
 [ 
 rows 
 ] 
  
 = 
  
 await 
  
 albumsTable 
 . 
 read 
 ( 
 query 
 ); 
  
 rows 
 . 
 forEach 
 ( 
 row 
  
 = 
>  
 { 
  
 const 
  
 json 
  
 = 
  
 row 
 . 
 toJSON 
 (); 
  
 console 
 . 
 log 
 ( 
  
 `SingerId: 
 ${ 
 json 
 . 
 SingerId 
 } 
 , AlbumId: 
 ${ 
 json 
 . 
 AlbumId 
 } 
 , AlbumTitle: 
 ${ 
 json 
 . 
 AlbumTitle 
 } 
 ` 
 , 
  
 ); 
  
 }); 
 } 
  
 catch 
  
 ( 
 err 
 ) 
  
 { 
  
 console 
 . 
 error 
 ( 
 'ERROR:' 
 , 
  
 err 
 ); 
 } 
  
 finally 
  
 { 
  
 // Close the database when finished. 
  
 await 
  
 database 
 . 
 close 
 (); 
 } 
 

Run the sample using the read argument.

node  
crud.js  
 read 
  
test-instance  
example-db  
 MY_PROJECT_ID 

You should see output similar to:

  SingerId 
 : 
  
 1 
 , 
  
 AlbumId 
 : 
  
 1 
 , 
  
 AlbumTitle 
 : 
  
 Total 
  
 Junk 
 SingerId 
 : 
  
 1 
 , 
  
 AlbumId 
 : 
  
 2 
 , 
  
 AlbumTitle 
 : 
  
 Go 
 , 
  
 Go 
 , 
  
 Go 
 SingerId 
 : 
  
 2 
 , 
  
 AlbumId 
 : 
  
 1 
 , 
  
 AlbumTitle 
 : 
  
 Green 
 SingerId 
 : 
  
 2 
 , 
  
 AlbumId 
 : 
  
 2 
 , 
  
 AlbumTitle 
 : 
  
 Forever 
  
 Hold 
  
 your 
  
 Peace 
 SingerId 
 : 
  
 2 
 , 
  
 AlbumId 
 : 
  
 3 
 , 
  
 AlbumTitle 
 : 
  
 Terrified 
 

Update the database schema

Assume you need to add a new column called MarketingBudget to the Albums table. Adding a new column to an existing table requires an update to your database schema. Spanner supports schema updates to a database while the database continues to serve traffic. Schema updates don't require taking the database offline and they don't lock entire tables or columns; you can continue writing data to the database during the schema update. Read more about supported schema updates and schema change performance in Make schema updates .

Add a column

You can add a column on the command line using the Google Cloud CLI or programmatically using the Spanner client library for Node.js.

On the command line

Use the following ALTER TABLE command to add the new column to the table:

GoogleSQL

  gcloud 
  
 spanner 
  
 databases 
  
 ddl 
  
 update 
  
 example 
 - 
 db 
  
 -- 
 instance 
 = 
 test 
 - 
 instance 
  
 \ 
  
 -- 
 ddl 
 = 
 'ALTER TABLE Albums ADD COLUMN MarketingBudget INT64' 
 

PostgreSQL

  gcloud 
  
 spanner 
  
 databases 
  
 ddl 
  
 update 
  
 example 
 - 
 db 
  
 -- 
 instance 
 = 
 test 
 - 
 instance 
  
 \ 
  
 -- 
 ddl 
 = 
 'ALTER TABLE Albums ADD COLUMN MarketingBudget BIGINT' 
 

You should see:

  Schema 
  
 updating 
 ... 
 done 
 . 
 

Use the Spanner client library for Node.js

Use Database.updateSchema to modify the schema:

  /** 
 * TODO(developer): Uncomment the following lines before running the sample. 
 */ 
 // const projectId = 'my-project-id'; 
 // const instanceId = 'my-instance'; 
 // const databaseId = 'my-database'; 
 // Imports the Google Cloud client library 
 const 
  
 { 
 Spanner 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/spanner 
' 
 ); 
 // creates a client 
 const 
  
 spanner 
  
 = 
  
 new 
  
  Spanner 
 
 ({ 
  
 projectId 
 : 
  
 projectId 
 , 
 }); 
 const 
  
 databaseAdminClient 
  
 = 
  
 spanner 
 . 
  getDatabaseAdminClient 
 
 (); 
 // Creates a new index in the database 
 try 
  
 { 
  
 const 
  
 [ 
 operation 
 ] 
  
 = 
  
 await 
  
 databaseAdminClient 
 . 
 updateDatabaseDdl 
 ({ 
  
 database 
 : 
  
 databaseAdminClient 
 . 
 databasePath 
 ( 
  
 projectId 
 , 
  
 instanceId 
 , 
  
 databaseId 
 , 
  
 ), 
  
 statements 
 : 
  
 [ 
 'ALTER TABLE Albums ADD COLUMN MarketingBudget INT64' 
 ], 
  
 }); 
  
 console 
 . 
 log 
 ( 
 'Waiting for operation to complete...' 
 ); 
  
 await 
  
  operation 
 
 . 
 promise 
 (); 
  
 console 
 . 
 log 
 ( 
 'Added the MarketingBudget column.' 
 ); 
 } 
  
 catch 
  
 ( 
 err 
 ) 
  
 { 
  
 console 
 . 
 error 
 ( 
 'ERROR:' 
 , 
  
 err 
 ); 
 } 
  
 finally 
  
 { 
  
 // Close the spanner client when finished. 
  
 // The databaseAdminClient does not require explicit closure. The closure of the Spanner client will automatically close the databaseAdminClient. 
  
 spanner 
 . 
 close 
 (); 
 } 
 

Run the sample using the addColumn argument.

node  
schema.js  
addColumn  
test-instance  
example-db  
 MY_PROJECT_ID 

You should see:

  Added 
  
 the 
  
 MarketingBudget 
  
 column 
 . 
 

Write data to the new column

The following code writes data to the new column. It sets MarketingBudget to 100000 for the row keyed by Albums(1, 1) and to 500000 for the row keyed by Albums(2, 2) .

  // Imports the Google Cloud client library 
 const 
  
 { 
 Spanner 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/spanner 
' 
 ); 
 /** 
 * TODO(developer): Uncomment the following lines before running the sample. 
 */ 
 // const projectId = 'my-project-id'; 
 // const instanceId = 'my-instance'; 
 // const databaseId = 'my-database'; 
 // Creates a client 
 const 
  
 spanner 
  
 = 
  
 new 
  
  Spanner 
 
 ({ 
  
 projectId 
 : 
  
 projectId 
 , 
 }); 
 // Gets a reference to a Cloud Spanner instance and database 
 const 
  
 instance 
  
 = 
  
 spanner 
 . 
 instance 
 ( 
 instanceId 
 ); 
 const 
  
 database 
  
 = 
  
 instance 
 . 
 database 
 ( 
 databaseId 
 ); 
 // Update a row in the Albums table 
 // Note: Cloud Spanner interprets Node.js numbers as FLOAT64s, so they 
 // must be converted to strings before being inserted as INT64s 
 const 
  
 albumsTable 
  
 = 
  
 database 
 . 
 table 
 ( 
 'Albums' 
 ); 
 try 
  
 { 
  
 await 
  
 albumsTable 
 . 
 update 
 ([ 
  
 { 
 SingerId 
 : 
  
 '1' 
 , 
  
 AlbumId 
 : 
  
 '1' 
 , 
  
 MarketingBudget 
 : 
  
 '100000' 
 }, 
  
 { 
 SingerId 
 : 
  
 '2' 
 , 
  
 AlbumId 
 : 
  
 '2' 
 , 
  
 MarketingBudget 
 : 
  
 '500000' 
 }, 
  
 ]); 
  
 console 
 . 
 log 
 ( 
 'Updated data.' 
 ); 
 } 
  
 catch 
  
 ( 
 err 
 ) 
  
 { 
  
 console 
 . 
 error 
 ( 
 'ERROR:' 
 , 
  
 err 
 ); 
 } 
  
 finally 
  
 { 
  
 // Close the database when finished. 
  
 database 
 . 
 close 
 (); 
 } 
 

Run the sample using the update argument.

node  
crud.js  
update  
test-instance  
example-db  
 MY_PROJECT_ID 

You should see:

  Updated 
  
 data 
 . 
 

You can also execute a SQL query or a read call to fetch the values that you just wrote.

Here's the code to execute the query:

  // This sample uses the `MarketingBudget` column. You can add the column 
 // by running the `add_column` sample or by running this DDL statement against 
 // your database: 
 //    ALTER TABLE Albums ADD COLUMN MarketingBudget INT64 
 // Imports the Google Cloud client library 
 const 
  
 { 
 Spanner 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/spanner 
' 
 ); 
 /** 
 * TODO(developer): Uncomment the following lines before running the sample. 
 */ 
 // const projectId = 'my-project-id'; 
 // const instanceId = 'my-instance'; 
 // const databaseId = 'my-database'; 
 // Creates a client 
 const 
  
 spanner 
  
 = 
  
 new 
  
  Spanner 
 
 ({ 
  
 projectId 
 : 
  
 projectId 
 , 
 }); 
 // Gets a reference to a Cloud Spanner instance and database 
 const 
  
 instance 
  
 = 
  
 spanner 
 . 
 instance 
 ( 
 instanceId 
 ); 
 const 
  
 database 
  
 = 
  
 instance 
 . 
 database 
 ( 
 databaseId 
 ); 
 const 
  
 query 
  
 = 
  
 { 
  
 sql 
 : 
  
 'SELECT SingerId, AlbumId, MarketingBudget FROM Albums' 
 , 
 }; 
 // Queries rows from the Albums table 
 try 
  
 { 
  
 const 
  
 [ 
 rows 
 ] 
  
 = 
  
 await 
  
 database 
 . 
 run 
 ( 
 query 
 ); 
  
 rows 
 . 
 forEach 
 ( 
 async 
  
 row 
  
 = 
>  
 { 
  
 const 
  
 json 
  
 = 
  
 row 
 . 
 toJSON 
 (); 
  
 console 
 . 
 log 
 ( 
  
 `SingerId: 
 ${ 
 json 
 . 
 SingerId 
 } 
 , AlbumId: 
 ${ 
  
 json 
 . 
 AlbumId 
  
 } 
 , MarketingBudget: 
 ${ 
  
 json 
 . 
 MarketingBudget 
  
 ? 
  
 json 
 . 
 MarketingBudget 
  
 : 
  
 null 
  
 } 
 ` 
 , 
  
 ); 
  
 }); 
 } 
  
 catch 
  
 ( 
 err 
 ) 
  
 { 
  
 console 
 . 
 error 
 ( 
 'ERROR:' 
 , 
  
 err 
 ); 
 } 
  
 finally 
  
 { 
  
 // Close the database when finished. 
  
 database 
 . 
 close 
 (); 
 } 
 

To execute this query, run the sample using the queryNewColumn argument.

node  
schema.js  
queryNewColumn  
test-instance  
example-db  
 MY_PROJECT_ID 

You should see:

  SingerId 
 : 
  
 1 
 , 
  
 AlbumId 
 : 
  
 1 
 , 
  
 MarketingBudget 
 : 
  
 100000 
 SingerId 
 : 
  
 1 
 , 
  
 AlbumId 
 : 
  
 2 
 , 
  
 MarketingBudget 
 : 
  
 null 
 SingerId 
 : 
  
 2 
 , 
  
 AlbumId 
 : 
  
 1 
 , 
  
 MarketingBudget 
 : 
  
 null 
 SingerId 
 : 
  
 2 
 , 
  
 AlbumId 
 : 
  
 2 
 , 
  
 MarketingBudget 
 : 
  
 500000 
 SingerId 
 : 
  
 2 
 , 
  
 AlbumId 
 : 
  
 3 
 , 
  
 MarketingBudget 
 : 
  
 null 
 

Update data

You can update data using DML in a read-write transaction.

You use the runUpdate() method to execute a DML statement.

  // This sample transfers 200,000 from the MarketingBudget field 
 // of the second Album to the first Album, as long as the second 
 // Album has enough money in its budget. Make sure to run the 
 // addColumn and updateData samples first (in that order). 
 // Imports the Google Cloud client library 
 const 
  
 { 
 Spanner 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/spanner 
' 
 ); 
 /** 
 * TODO(developer): Uncomment the following lines before running the sample. 
 */ 
 // const projectId = 'my-project-id'; 
 // const instanceId = 'my-instance'; 
 // const databaseId = 'my-database'; 
 // Creates a client 
 const 
  
 spanner 
  
 = 
  
 new 
  
  Spanner 
 
 ({ 
  
 projectId 
 : 
  
 projectId 
 , 
 }); 
 // Gets a reference to a Cloud Spanner instance and database 
 const 
  
 instance 
  
 = 
  
 spanner 
 . 
 instance 
 ( 
 instanceId 
 ); 
 const 
  
 database 
  
 = 
  
 instance 
 . 
 database 
 ( 
 databaseId 
 ); 
 const 
  
 transferAmount 
  
 = 
  
 200000 
 ; 
 database 
 . 
  runTransaction 
 
 (( 
 err 
 , 
  
 transaction 
 ) 
  
 = 
>  
 { 
  
 if 
  
 ( 
 err 
 ) 
  
 { 
  
 console 
 . 
 error 
 ( 
 err 
 ); 
  
 return 
 ; 
  
 } 
  
 let 
  
 firstBudget 
 , 
  
 secondBudget 
 ; 
  
 const 
  
 queryOne 
  
 = 
  
 `SELECT MarketingBudget FROM Albums 
 WHERE SingerId = 2 AND AlbumId = 2` 
 ; 
  
 const 
  
 queryTwo 
  
 = 
  
 `SELECT MarketingBudget FROM Albums 
 WHERE SingerId = 1 AND AlbumId = 1` 
 ; 
  
 Promise 
 . 
 all 
 ([ 
  
 // Reads the second album's budget 
  
 transaction 
 . 
 run 
 ( 
 queryOne 
 ). 
 then 
 ( 
 results 
  
 = 
>  
 { 
  
 // Gets second album's budget 
  
 const 
  
 rows 
  
 = 
  
 results 
 [ 
 0 
 ]. 
 map 
 ( 
 row 
  
 = 
>  
 row 
 . 
 toJSON 
 ()); 
  
 secondBudget 
  
 = 
  
 rows 
 [ 
 0 
 ]. 
 MarketingBudget 
 ; 
  
 console 
 . 
 log 
 ( 
 `The second album's marketing budget: 
 ${ 
 secondBudget 
 } 
 ` 
 ); 
  
 // Makes sure the second album's budget is large enough 
  
 if 
  
 ( 
 secondBudget 
 < 
 transferAmount 
 ) 
  
 { 
  
 throw 
  
 new 
  
 Error 
 ( 
  
 `The second album's budget ( 
 ${ 
 secondBudget 
 } 
 ) is less than the transfer amount ( 
 ${ 
 transferAmount 
 } 
 ).` 
 , 
  
 ); 
  
 } 
  
 }), 
  
 // Reads the first album's budget 
  
 transaction 
 . 
 run 
 ( 
 queryTwo 
 ). 
 then 
 ( 
 results 
  
 = 
>  
 { 
  
 // Gets first album's budget 
  
 const 
  
 rows 
  
 = 
  
 results 
 [ 
 0 
 ]. 
 map 
 ( 
 row 
  
 = 
>  
 row 
 . 
 toJSON 
 ()); 
  
 firstBudget 
  
 = 
  
 rows 
 [ 
 0 
 ]. 
 MarketingBudget 
 ; 
  
 console 
 . 
 log 
 ( 
 `The first album's marketing budget: 
 ${ 
 firstBudget 
 } 
 ` 
 ); 
  
 }), 
  
 ]) 
  
 . 
 then 
 (() 
  
 = 
>  
 { 
  
 // Transfers the budgets between the albums 
  
 console 
 . 
 log 
 ( 
 firstBudget 
 , 
  
 secondBudget 
 ); 
  
 firstBudget 
  
 += 
  
 transferAmount 
 ; 
  
 secondBudget 
  
 -= 
  
 transferAmount 
 ; 
  
 console 
 . 
 log 
 ( 
 firstBudget 
 , 
  
 secondBudget 
 ); 
  
 // Updates the database 
  
 // Note: Cloud Spanner interprets Node.js numbers as FLOAT64s, so they 
  
 // must be converted (back) to strings before being inserted as INT64s. 
  
 return 
  
 transaction 
  
 . 
  runUpdate 
 
 ({ 
  
 sql 
 : 
  
 `UPDATE Albums SET MarketingBudget = @Budget 
 WHERE SingerId = 1 and AlbumId = 1` 
 , 
  
 params 
 : 
  
 { 
  
 Budget 
 : 
  
 firstBudget 
 , 
  
 }, 
  
 }) 
  
 . 
 then 
 (() 
  
 = 
>  
 transaction 
 . 
  runUpdate 
 
 ({ 
  
 sql 
 : 
  
 `UPDATE Albums SET MarketingBudget = @Budget 
 WHERE SingerId = 2 and AlbumId = 2` 
 , 
  
 params 
 : 
  
 { 
  
 Budget 
 : 
  
 secondBudget 
 , 
  
 }, 
  
 }), 
  
 ); 
  
 }) 
  
 . 
 then 
 (() 
  
 = 
>  
 { 
  
 // Commits the transaction and send the changes to the database 
  
 return 
  
 transaction 
 . 
 commit 
 (); 
  
 }) 
  
 . 
 then 
 (() 
  
 = 
>  
 { 
  
 console 
 . 
 log 
 ( 
  
 `Successfully executed read-write transaction using DML to transfer 
 ${ 
 transferAmount 
 } 
 from Album 2 to Album 1.` 
 , 
  
 ); 
  
 }) 
  
 . 
 then 
 (() 
  
 = 
>  
 { 
  
 // Closes the database when finished 
  
 database 
 . 
 close 
 (); 
  
 }); 
 }); 
 

Run the sample using the writeWithTransactionUsingDml argument.

  node 
  
 dml 
 . 
 js 
  
 writeWithTransactionUsingDml 
  
 test 
 - 
 instance 
  
 example 
 - 
 db 
  
 MY_PROJECT_ID 
 

You should see:

  Successfully 
  
 executed 
  
 read 
 - 
 write 
  
 transaction 
  
 using 
  
 DML 
  
 to 
  
 transfer 
  
 $200000 
  
 from 
  
 Album 
  
 2 
  
 to 
  
 Album 
  
 1. 
 

Use a secondary index

Suppose you wanted to fetch all rows of Albums that have AlbumTitle values in a certain range. You could read all values from the AlbumTitle column using a SQL statement or a read call, and then discard the rows that don't meet the criteria, but doing this full table scan is expensive, especially for tables with a lot of rows. Instead you can speed up the retrieval of rows when searching by non-primary key columns by creating a secondary index on the table.

Adding a secondary index to an existing table requires a schema update. Like other schema updates, Spanner supports adding an index while the database continues to serve traffic. Spanner automatically backfills the index with your existing data. Backfills might take a few minutes to complete, but you don't need to take the database offline or avoid writing to the indexed table during this process. For more details, see Add a secondary index .

After you add a secondary index, Spanner automatically uses it for SQL queries that are likely to run faster with the index. If you use the read interface, you must specify the index that you want to use.

Add a secondary index

You can add an index on the command line using the gcloud CLI or programmatically using the Spanner client library for Node.js.

On the command line

Use the following CREATE INDEX command to add an index to the database:

 gcloud  
spanner  
databases  
ddl  
update  
example-db  
--instance = 
test-instance  
 \ 
  
--ddl = 
 'CREATE INDEX AlbumsByAlbumTitle ON Albums(AlbumTitle)' 
 

You should see:

  Schema 
  
 updating 
 ... 
 done 
 . 
 

Using the Spanner client library for Node.js

Use Database.updateSchema() to add an index:

  // Imports the Google Cloud client library 
 const 
  
 { 
 Spanner 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/spanner 
' 
 ); 
 /** 
 * TODO(developer): Uncomment the following lines before running the sample. 
 */ 
 // const projectId = 'my-project-id'; 
 // const instanceId = 'my-instance'; 
 // const databaseId = 'my-database'; 
 // Creates a client 
 const 
  
 spanner 
  
 = 
  
 new 
  
  Spanner 
 
 ({ 
  
 projectId 
 : 
  
 projectId 
 , 
 }); 
 const 
  
 databaseAdminClient 
  
 = 
  
 spanner 
 . 
  getDatabaseAdminClient 
 
 (); 
 const 
  
 request 
  
 = 
  
 [ 
 'CREATE INDEX AlbumsByAlbumTitle ON Albums(AlbumTitle)' 
 ]; 
 // Creates a new index in the database 
 try 
  
 { 
  
 const 
  
 [ 
 operation 
 ] 
  
 = 
  
 await 
  
 databaseAdminClient 
 . 
 updateDatabaseDdl 
 ({ 
  
 database 
 : 
  
 databaseAdminClient 
 . 
 databasePath 
 ( 
  
 projectId 
 , 
  
 instanceId 
 , 
  
 databaseId 
 , 
  
 ), 
  
 statements 
 : 
  
 request 
 , 
  
 }); 
  
 console 
 . 
 log 
 ( 
 'Waiting for operation to complete...' 
 ); 
  
 await 
  
  operation 
 
 . 
 promise 
 (); 
  
 console 
 . 
 log 
 ( 
 'Added the AlbumsByAlbumTitle index.' 
 ); 
 } 
  
 catch 
  
 ( 
 err 
 ) 
  
 { 
  
 console 
 . 
 error 
 ( 
 'ERROR:' 
 , 
  
 err 
 ); 
 } 
  
 finally 
  
 { 
  
 // Close the spanner client when finished. 
  
 // The databaseAdminClient does not require explicit closure. The closure of the Spanner client will automatically close the databaseAdminClient. 
  
 spanner 
 . 
 close 
 (); 
 } 
 

Run the sample using the createIndex argument.

node  
indexing.js  
createIndex  
test-instance  
example-db  
 MY_PROJECT_ID 

Adding an index can take a few minutes. After the index is added, you should see:

  Added 
  
 the 
  
 AlbumsByAlbumTitle 
  
 index 
 . 
 

Read using the index

For SQL queries, Spanner automatically uses an appropriate index. In the read interface, you must specify the index in your request.

To use the index in the read interface, use the Table.read() method.

  // Imports the Google Cloud client library 
 const 
  
 { 
 Spanner 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/spanner 
' 
 ); 
 /** 
 * TODO(developer): Uncomment the following lines before running the sample. 
 */ 
 // const projectId = 'my-project-id'; 
 // const instanceId = 'my-instance'; 
 // const databaseId = 'my-database'; 
 // Creates a client 
 const 
  
 spanner 
  
 = 
  
 new 
  
  Spanner 
 
 ({ 
  
 projectId 
 : 
  
 projectId 
 , 
 }); 
 // Gets a reference to a Cloud Spanner instance and database 
 const 
  
 instance 
  
 = 
  
 spanner 
 . 
 instance 
 ( 
 instanceId 
 ); 
 const 
  
 database 
  
 = 
  
 instance 
 . 
 database 
 ( 
 databaseId 
 ); 
 const 
  
 albumsTable 
  
 = 
  
 database 
 . 
 table 
 ( 
 'Albums' 
 ); 
 const 
  
 query 
  
 = 
  
 { 
  
 columns 
 : 
  
 [ 
 'AlbumId' 
 , 
  
 'AlbumTitle' 
 ], 
  
 keySet 
 : 
  
 { 
  
 all 
 : 
  
 true 
 , 
  
 }, 
  
 index 
 : 
  
 'AlbumsByAlbumTitle' 
 , 
 }; 
 // Reads the Albums table using an index 
 try 
  
 { 
  
 const 
  
 [ 
 rows 
 ] 
  
 = 
  
 await 
  
 albumsTable 
 . 
 read 
 ( 
 query 
 ); 
  
 rows 
 . 
 forEach 
 ( 
 row 
  
 = 
>  
 { 
  
 const 
  
 json 
  
 = 
  
 row 
 . 
 toJSON 
 (); 
  
 console 
 . 
 log 
 ( 
 `AlbumId: 
 ${ 
 json 
 . 
 AlbumId 
 } 
 , AlbumTitle: 
 ${ 
 json 
 . 
 AlbumTitle 
 } 
 ` 
 ); 
  
 }); 
 } 
  
 catch 
  
 ( 
 err 
 ) 
  
 { 
  
 console 
 . 
 error 
 ( 
 'ERROR:' 
 , 
  
 err 
 ); 
 } 
  
 finally 
  
 { 
  
 // Close the database when finished. 
  
 database 
 . 
 close 
 (); 
 } 
 

Run the sample using the readIndex argument.

node  
indexing.js  
readIndex  
test-instance  
example-db  
 MY_PROJECT_ID 

You should see:

  AlbumId 
 : 
  
 2 
 , 
  
 AlbumTitle 
 : 
  
 Forever 
  
 Hold 
  
 your 
  
 Peace 
 AlbumId 
 : 
  
 2 
 , 
  
 AlbumTitle 
 : 
  
 Go 
 , 
  
 Go 
 , 
  
 Go 
 AlbumId 
 : 
  
 1 
 , 
  
 AlbumTitle 
 : 
  
 Green 
 AlbumId 
 : 
  
 3 
 , 
  
 AlbumTitle 
 : 
  
 Terrified 
 AlbumId 
 : 
  
 1 
 , 
  
 AlbumTitle 
 : 
  
 Total 
  
 Junk 
 

Add an index for index-only reads

You might have noticed that the previous read example doesn't include reading the MarketingBudget column. This is because Spanner's read interface doesn't support the ability to join an index with a data table to look up values that are not stored in the index.

Create an alternate definition of AlbumsByAlbumTitle that stores a copy of MarketingBudget in the index.

On the command line

GoogleSQL

  gcloud 
  
 spanner 
  
 databases 
  
 ddl 
  
 update 
  
 example 
 - 
 db 
  
 -- 
 instance 
 = 
 test 
 - 
 instance 
  
 \ 
  
 -- 
 ddl 
 = 
 ' 
 CREATE 
  
 INDEX 
  
 AlbumsByAlbumTitle2 
  
 ON 
  
 Albums 
 ( 
 AlbumTitle 
 ) 
  
 STORING 
  
 ( 
 MarketingBudget 
 ) 
 

PostgreSQL

  gcloud 
  
 spanner 
  
 databases 
  
 ddl 
  
 update 
  
 example 
 - 
 db 
  
 -- 
 instance 
 = 
 test 
 - 
 instance 
  
 \ 
  
 -- 
 ddl 
 = 
 ' 
 CREATE 
  
 INDEX 
  
 AlbumsByAlbumTitle2 
  
 ON 
  
 Albums 
 ( 
 AlbumTitle 
 ) 
  
 INCLUDE 
  
 ( 
 MarketingBudget 
 ) 
 

Adding an index can take a few minutes. After the index is added, you should see:

  Schema 
  
 updating 
 ... 
 done 
 . 
 

Using the Spanner client library for Node.js

Use Database.updateSchema() to add an index with a STORING clause:
  // "Storing" indexes store copies of the columns they index 
 // This speeds up queries, but takes more space compared to normal indexes 
 // See the link below for more information: 
 // https://cloud.google.com/spanner/docs/secondary-indexes#storing_clause 
 // Imports the Google Cloud client library 
 const 
  
 { 
 Spanner 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/spanner 
' 
 ); 
 /** 
 * TODO(developer): Uncomment the following lines before running the sample. 
 */ 
 // const projectId = 'my-project-id'; 
 // const instanceId = 'my-instance'; 
 // const databaseId = 'my-database'; 
 // Creates a client 
 const 
  
 spanner 
  
 = 
  
 new 
  
  Spanner 
 
 ({ 
  
 projectId 
 : 
  
 projectId 
 , 
 }); 
 const 
  
 databaseAdminClient 
  
 = 
  
 spanner 
 . 
  getDatabaseAdminClient 
 
 (); 
 const 
  
 request 
  
 = 
  
 [ 
  
 'CREATE INDEX AlbumsByAlbumTitle2 ON Albums(AlbumTitle) STORING (MarketingBudget)' 
 , 
 ]; 
 // Creates a new index in the database 
 try 
  
 { 
  
 const 
  
 [ 
 operation 
 ] 
  
 = 
  
 await 
  
 databaseAdminClient 
 . 
 updateDatabaseDdl 
 ({ 
  
 database 
 : 
  
 databaseAdminClient 
 . 
 databasePath 
 ( 
  
 projectId 
 , 
  
 instanceId 
 , 
  
 databaseId 
 , 
  
 ), 
  
 statements 
 : 
  
 request 
 , 
  
 }); 
  
 console 
 . 
 log 
 ( 
 'Waiting for operation to complete...' 
 ); 
  
 await 
  
  operation 
 
 . 
 promise 
 (); 
  
 console 
 . 
 log 
 ( 
 'Added the AlbumsByAlbumTitle2 index.' 
 ); 
 } 
  
 catch 
  
 ( 
 err 
 ) 
  
 { 
  
 console 
 . 
 error 
 ( 
 'ERROR:' 
 , 
  
 err 
 ); 
 } 
  
 finally 
  
 { 
  
 // Close the spanner client when finished. 
  
 // The databaseAdminClient does not require explicit closure. The closure of the Spanner client will automatically close the databaseAdminClient. 
  
 spanner 
 . 
 close 
 (); 
 } 
 

Run the sample using the createStoringIndex argument.

node  
indexing.js  
createStoringIndex  
test-instance  
example-db  
 MY_PROJECT_ID 

You should see:

  Added 
  
 the 
  
 AlbumsByAlbumTitle2 
  
 index 
 . 
 

Now you can execute a read that fetches all AlbumId , AlbumTitle , and MarketingBudget columns from the AlbumsByAlbumTitle2 index:

  // "Storing" indexes store copies of the columns they index 
 // This speeds up queries, but takes more space compared to normal indexes 
 // See the link below for more information: 
 // https://cloud.google.com/spanner/docs/secondary-indexes#storing_clause 
 // Imports the Google Cloud client library 
 const 
  
 { 
 Spanner 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/spanner 
' 
 ); 
 /** 
 * TODO(developer): Uncomment the following lines before running the sample. 
 */ 
 // const projectId = 'my-project-id'; 
 // const instanceId = 'my-instance'; 
 // const databaseId = 'my-database'; 
 // Creates a client 
 const 
  
 spanner 
  
 = 
  
 new 
  
  Spanner 
 
 ({ 
  
 projectId 
 : 
  
 projectId 
 , 
 }); 
 // Gets a reference to a Cloud Spanner instance and database 
 const 
  
 instance 
  
 = 
  
 spanner 
 . 
 instance 
 ( 
 instanceId 
 ); 
 const 
  
 database 
  
 = 
  
 instance 
 . 
 database 
 ( 
 databaseId 
 ); 
 const 
  
 albumsTable 
  
 = 
  
 database 
 . 
 table 
 ( 
 'Albums' 
 ); 
 const 
  
 query 
  
 = 
  
 { 
  
 columns 
 : 
  
 [ 
 'AlbumId' 
 , 
  
 'AlbumTitle' 
 , 
  
 'MarketingBudget' 
 ], 
  
 keySet 
 : 
  
 { 
  
 all 
 : 
  
 true 
 , 
  
 }, 
  
 index 
 : 
  
 'AlbumsByAlbumTitle2' 
 , 
 }; 
 // Reads the Albums table using a storing index 
 try 
  
 { 
  
 const 
  
 [ 
 rows 
 ] 
  
 = 
  
 await 
  
 albumsTable 
 . 
 read 
 ( 
 query 
 ); 
  
 rows 
 . 
 forEach 
 ( 
 row 
  
 = 
>  
 { 
  
 const 
  
 json 
  
 = 
  
 row 
 . 
 toJSON 
 (); 
  
 let 
  
 rowString 
  
 = 
  
 `AlbumId: 
 ${ 
 json 
 . 
 AlbumId 
 } 
 ` 
 ; 
  
 rowString 
  
 += 
  
 `, AlbumTitle: 
 ${ 
 json 
 . 
 AlbumTitle 
 } 
 ` 
 ; 
  
 if 
  
 ( 
 json 
 . 
 MarketingBudget 
 ) 
  
 { 
  
 rowString 
  
 += 
  
 `, MarketingBudget: 
 ${ 
 json 
 . 
 MarketingBudget 
 } 
 ` 
 ; 
  
 } 
  
 console 
 . 
 log 
 ( 
 rowString 
 ); 
  
 }); 
 } 
  
 catch 
  
 ( 
 err 
 ) 
  
 { 
  
 console 
 . 
 error 
 ( 
 'ERROR:' 
 , 
  
 err 
 ); 
 } 
  
 finally 
  
 { 
  
 // Close the database when finished. 
  
 database 
 . 
 close 
 (); 
 } 
 

Run the sample using the readStoringIndex argument.

node  
indexing.js  
readStoringIndex  
test-instance  
example-db  
 MY_PROJECT_ID 

You should see output similar to:

  AlbumId 
 : 
  
 2 
 , 
  
 AlbumTitle 
 : 
  
 Forever 
  
 Hold 
  
 your 
  
 Peace 
 , 
  
 MarketingBudget 
 : 
  
 300000 
 AlbumId 
 : 
  
 2 
 , 
  
 AlbumTitle 
 : 
  
 Go 
 , 
  
 Go 
 , 
  
 Go 
 , 
  
 MarketingBudget 
 : 
  
 null 
 AlbumId 
 : 
  
 1 
 , 
  
 AlbumTitle 
 : 
  
 Green 
 , 
  
 MarketingBudget 
 : 
  
 null 
 AlbumId 
 : 
  
 3 
 , 
  
 AlbumTitle 
 : 
  
 Terrified 
 , 
  
 MarketingBudget 
 : 
  
 null 
 AlbumId 
 : 
  
 1 
 , 
  
 AlbumTitle 
 : 
  
 Total 
  
 Junk 
 , 
  
 MarketingBudget 
 : 
  
 300000 
 

Retrieve data using read-only transactions

Suppose you want to execute more than one read at the same timestamp. Read-only transactions observe a consistent prefix of the transaction commit history, so your application always gets consistent data. Use Database.runTransaction() for executing read-only transactions.

The following shows how to run a query and perform a read in the same read-only transaction:

  // Imports the Google Cloud client library 
 const 
  
 { 
 Spanner 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/spanner 
' 
 ); 
 /** 
 * TODO(developer): Uncomment the following lines before running the sample. 
 */ 
 // const projectId = 'my-project-id'; 
 // const instanceId = 'my-instance'; 
 // const databaseId = 'my-database'; 
 // Creates a client 
 const 
  
 spanner 
  
 = 
  
 new 
  
  Spanner 
 
 ({ 
  
 projectId 
 : 
  
 projectId 
 , 
 }); 
 // Gets a reference to a Cloud Spanner instance and database 
 const 
  
 instance 
  
 = 
  
 spanner 
 . 
 instance 
 ( 
 instanceId 
 ); 
 const 
  
 database 
  
 = 
  
 instance 
 . 
 database 
 ( 
 databaseId 
 ); 
 // Gets a transaction object that captures the database state 
 // at a specific point in time 
 database 
 . 
  getSnapshot 
 
 ( 
 async 
  
 ( 
 err 
 , 
  
 transaction 
 ) 
  
 = 
>  
 { 
  
 if 
  
 ( 
 err 
 ) 
  
 { 
  
 console 
 . 
 error 
 ( 
 err 
 ); 
  
 return 
 ; 
  
 } 
  
 const 
  
 queryOne 
  
 = 
  
 'SELECT SingerId, AlbumId, AlbumTitle FROM Albums' 
 ; 
  
 try 
  
 { 
  
 // Read #1, using SQL 
  
 const 
  
 [ 
 qOneRows 
 ] 
  
 = 
  
 await 
  
 transaction 
 . 
 run 
 ( 
 queryOne 
 ); 
  
 qOneRows 
 . 
 forEach 
 ( 
 row 
  
 = 
>  
 { 
  
 const 
  
 json 
  
 = 
  
 row 
 . 
 toJSON 
 (); 
  
 console 
 . 
 log 
 ( 
  
 `SingerId: 
 ${ 
 json 
 . 
 SingerId 
 } 
 , AlbumId: 
 ${ 
 json 
 . 
 AlbumId 
 } 
 , AlbumTitle: 
 ${ 
 json 
 . 
 AlbumTitle 
 } 
 ` 
 , 
  
 ); 
  
 }); 
  
 const 
  
 queryTwo 
  
 = 
  
 { 
  
 columns 
 : 
  
 [ 
 'SingerId' 
 , 
  
 'AlbumId' 
 , 
  
 'AlbumTitle' 
 ], 
  
 }; 
  
 // Read #2, using the `read` method. Even if changes occur 
  
 // in-between the reads, the transaction ensures that both 
  
 // return the same data. 
  
 const 
  
 [ 
 qTwoRows 
 ] 
  
 = 
  
 await 
  
 transaction 
 . 
 read 
 ( 
 'Albums' 
 , 
  
 queryTwo 
 ); 
  
 qTwoRows 
 . 
 forEach 
 ( 
 row 
  
 = 
>  
 { 
  
 const 
  
 json 
  
 = 
  
 row 
 . 
 toJSON 
 (); 
  
 console 
 . 
 log 
 ( 
  
 `SingerId: 
 ${ 
 json 
 . 
 SingerId 
 } 
 , AlbumId: 
 ${ 
 json 
 . 
 AlbumId 
 } 
 , AlbumTitle: 
 ${ 
 json 
 . 
 AlbumTitle 
 } 
 ` 
 , 
  
 ); 
  
 }); 
  
 console 
 . 
 log 
 ( 
 'Successfully executed read-only transaction.' 
 ); 
  
 } 
  
 catch 
  
 ( 
 err 
 ) 
  
 { 
  
 console 
 . 
 error 
 ( 
 'ERROR:' 
 , 
  
 err 
 ); 
  
 } 
  
 finally 
  
 { 
  
 transaction 
 . 
 end 
 (); 
  
 // Close the database when finished. 
  
 await 
  
 database 
 . 
 close 
 (); 
  
 } 
 }); 
 

Run the sample using the readOnly argument.

node  
transaction.js  
readOnly  
test-instance  
example-db  
 MY_PROJECT_ID 

You should see output similar to:

  SingerId 
 : 
  
 2 
 , 
  
 AlbumId 
 : 
  
 2 
 , 
  
 AlbumTitle 
 : 
  
 Forever 
  
 Hold 
  
 your 
  
 Peace 
 SingerId 
 : 
  
 1 
 , 
  
 AlbumId 
 : 
  
 2 
 , 
  
 AlbumTitle 
 : 
  
 Go 
 , 
  
 Go 
 , 
  
 Go 
 SingerId 
 : 
  
 2 
 , 
  
 AlbumId 
 : 
  
 1 
 , 
  
 AlbumTitle 
 : 
  
 Green 
 SingerId 
 : 
  
 2 
 , 
  
 AlbumId 
 : 
  
 3 
 , 
  
 AlbumTitle 
 : 
  
 Terrified 
 SingerId 
 : 
  
 1 
 , 
  
 AlbumId 
 : 
  
 1 
 , 
  
 AlbumTitle 
 : 
  
 Total 
  
 Junk 
 SingerId 
 : 
  
 1 
 , 
  
 AlbumId 
 : 
  
 2 
 , 
  
 AlbumTitle 
 : 
  
 Go 
 , 
  
 Go 
 , 
  
 Go 
 SingerId 
 : 
  
 1 
 , 
  
 AlbumId 
 : 
  
 1 
 , 
  
 AlbumTitle 
 : 
  
 Total 
  
 Junk 
 SingerId 
 : 
  
 2 
 , 
  
 AlbumId 
 : 
  
 1 
 , 
  
 AlbumTitle 
 : 
  
 Green 
 SingerId 
 : 
  
 2 
 , 
  
 AlbumId 
 : 
  
 2 
 , 
  
 AlbumTitle 
 : 
  
 Forever 
  
 Hold 
  
 your 
  
 Peace 
 SingerId 
 : 
  
 2 
 , 
  
 AlbumId 
 : 
  
 3 
 , 
  
 AlbumTitle 
 : 
  
 Terrified 
 Successfully 
  
 executed 
  
 read 
 - 
 only 
  
 transaction 
 . 
 

Cleanup

To avoid incurring additional charges to your Cloud Billing account for the resources used in this tutorial, drop the database and delete the instance that you created.

Delete the database

If you delete an instance, all databases within it are automatically deleted. This step shows how to delete a database without deleting an instance (you would still incur charges for the instance).

On the command line

  gcloud 
  
 spanner 
  
 databases 
  
 delete 
  
 example 
 - 
 db 
  
 -- 
 instance 
 = 
 test 
 - 
 instance 
 

Using the Google Cloud console

  1. Go to the Spanner Instancespage in the Google Cloud console.

    Go to the Instances page

  2. Click the instance.

  3. Click the database that you want to delete.

  4. In the Database detailspage, click Delete.

  5. Confirm that you want to delete the database and click Delete.

Delete the instance

Deleting an instance automatically drops all databases created in that instance.

On the command line

  gcloud 
  
 spanner 
  
 instances 
  
 delete 
  
 test 
 - 
 instance 
 

Using the Google Cloud console

  1. Go to the Spanner Instancespage in the Google Cloud console.

    Go to the Instances page

  2. Click your instance.

  3. Click Delete.

  4. Confirm that you want to delete the instance and click Delete.

What's next

Design a Mobile Site
View Site in Mobile | Classic
Share by: