Class XGBoostModel (1.34.0)

  XGBoostModel 
 ( 
 model_path 
 : 
 str 
 , 
 * 
 , 
 input 
 : 
 typing 
 . 
 Mapping 
 [ 
 str 
 , 
 str 
 ] 
 = 
 {}, 
 output 
 : 
 typing 
 . 
 Mapping 
 [ 
 str 
 , 
 str 
 ] 
 = 
 {}, 
 session 
 : 
 typing 
 . 
 Optional 
 [ 
 bigframes 
 . 
 session 
 . 
 Session 
 ] 
 = 
 None 
 ) 
 

Imported XGBoost model.

Parameters

Name
Description
model_path
str

Cloud Storage path that holds the model files.

input
Dict, default None

Specify the model input schema information when you create the XGBoost model. The input should be the format of {field_name: field_type}. Input is optional only if feature_names and feature_types are both specified in the model file. Supported types are "bool", "string", "int64", "float64", "array

output
Dict, default None

Specify the model output schema information when you create the XGBoost model. The input should be the format of {field_name: field_type}. Output is optional only if feature_names and feature_types are both specified in the model file. Supported types are "bool", "string", "int64", "float64", "array

session
BigQuery Session

BQ session to create the model.

Methods

__repr__

  __repr__ 
 () 
 

Print the estimator's constructor with all non-default parameter values.

get_params

  get_params 
 ( 
 deep 
 : 
 bool 
 = 
 True 
 ) 
 - 
> typing 
 . 
 Dict 
 [ 
 str 
 , 
 typing 
 . 
 Any 
 ] 
 

Get parameters for this estimator.

Parameter
Name
Description
deep
bool, default True

Default True . If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns
Type
Description
Dictionary
A dictionary of parameter names mapped to their values.

predict

  predict 
 ( 
 X 
 : 
 typing 
 . 
 Union 
 [ 
 bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 pandas 
 . 
 core 
 . 
 frame 
 . 
 DataFrame 
 , 
 pandas 
 . 
 core 
 . 
 series 
 . 
 Series 
 , 
 ] 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

Predict the result from input DataFrame.

Parameter
Name
Description
X
bigframes.dataframe.DataFrame or bigframes.series.Series or pandas.core.frame.DataFrame or pandas.core.series.Series

Input DataFrame or Series. Schema is defined by the model.

Returns
Type
Description
Output DataFrame. Schema is defined by the model.

register

  register 
 ( 
 vertex_ai_model_id 
 : 
 typing 
 . 
 Optional 
 [ 
 str 
 ] 
 = 
 None 
 ) 
 - 
> bigframes 
 . 
 ml 
 . 
 base 
 . 
 _T 
 

Register the model to Vertex AI.

After register, go to the Google Cloud console ( https://console.cloud.google.com/vertex-ai/models ) to manage the model registries. Refer to https://cloud.google.com/vertex-ai/docs/model-registry/introduction for more options.

Parameter
Name
Description
vertex_ai_model_id
Optional[str], default None

Optional string id as model id in Vertex. If not set, will default to 'bigframes_{bq_model_id}'. Vertex Ai model id will be truncated to 63 characters due to its limitation.

to_gbq

  to_gbq 
 ( 
 model_name 
 : 
 str 
 , 
 replace 
 : 
 bool 
 = 
 False 
 ) 
 - 
> bigframes 
 . 
 ml 
 . 
 imported 
 . 
 XGBoostModel 
 

Save the model to BigQuery.

Parameters
Name
Description
model_name
str

The name of the model.

replace
bool, default False

Determine whether to replace if the model already exists. Default to False.

Returns
Type
Description
XGBoostModel
Saved model.
Design a Mobile Site
View Site in Mobile | Classic
Share by: