- 2.17.0 (latest)
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.0
- 2.2.0
- 2.0.0-dev0
- 1.36.0
- 1.35.0
- 1.34.0
- 1.33.0
- 1.32.0
- 1.31.0
- 1.30.0
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
Pipeline
(
steps
:
typing
.
List
[
typing
.
Tuple
[
str
,
bigframes
.
ml
.
base
.
BaseEstimator
]])
Pipeline of transforms with a final estimator.
Sequentially apply a list of transforms and a final estimator.
Intermediate steps of the pipeline must be transforms
. That is, they
must implement fit
and transform
methods.
The final estimator only needs to implement fit
.
The purpose of the pipeline is to assemble several steps that can be
cross-validated together while setting different parameters. This simplifies code and allows for
deploying an estimator and preprocessing together, e.g. with Pipeline.to_gbq(...).
Methods
__repr__
__repr__
()
Print the estimator's constructor with all non-default parameter values.
fit
fit
(
X
:
typing
.
Union
[
bigframes
.
dataframe
.
DataFrame
,
bigframes
.
series
.
Series
],
y
:
typing
.
Optional
[
typing
.
Union
[
bigframes
.
dataframe
.
DataFrame
,
bigframes
.
series
.
Series
]
]
=
None
,
)
-
> bigframes
.
ml
.
pipeline
.
Pipeline
Fit the model.
Fit all the transformers one after the other and transform the data. Finally, fit the transformed data using the final estimator.
X
bigframes.dataframe.DataFrame
or bigframes.series.Series
A DataFrame or Series representing training data. Must match the input requirements of the first step of the pipeline.
y
bigframes.dataframe.DataFrame
or bigframes.series.Series
A DataFrame or Series representing training targets, if applicable.
Pipeline
get_params
get_params
(
deep
:
bool
=
True
)
-
> typing
.
Dict
[
str
,
typing
.
Any
]
Get parameters for this estimator.
deep
bool, default True
Default True
. If True, will return the parameters for this estimator and contained subobjects that are estimators.
Dictionary
predict
predict
(
X
:
typing
.
Union
[
bigframes
.
dataframe
.
DataFrame
,
bigframes
.
series
.
Series
,
pandas
.
core
.
frame
.
DataFrame
,
pandas
.
core
.
series
.
Series
,
]
)
-
> bigframes
.
dataframe
.
DataFrame
API documentation for predict
method.
score
score
(
X
:
typing
.
Union
[
bigframes
.
dataframe
.
DataFrame
,
bigframes
.
series
.
Series
],
y
:
typing
.
Optional
[
typing
.
Union
[
bigframes
.
dataframe
.
DataFrame
,
bigframes
.
series
.
Series
]
]
=
None
,
)
-
> bigframes
.
dataframe
.
DataFrame
API documentation for score
method.
to_gbq
to_gbq
(
model_name
:
str
,
replace
:
bool
=
False
)
-
> bigframes
.
ml
.
pipeline
.
Pipeline
Save the pipeline to BigQuery.
model_name
str
The name of the model(pipeline).
replace
bool, default False
Whether to replace if the model(pipeline) already exists. Default to False.
Pipeline