- 2.28.0 (latest)
- 2.27.0
- 2.26.0
- 2.25.0
- 2.24.0
- 2.23.0
- 2.22.0
- 2.21.0
- 2.20.0
- 2.19.0
- 2.18.0
- 2.17.0
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.0
- 2.2.0
- 1.36.0
- 1.35.0
- 1.34.0
- 1.33.0
- 1.32.0
- 1.31.0
- 1.30.0
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
This module integrates BigQuery built-in AI functions for use with Series/DataFrame objects, such as AI.GENERATE_BOOL: https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-ai-generate-bool
Modules Functions
generate_bool
generate_bool
(
prompt
:
typing
.
Union
[
bigframes
.
series
.
Series
,
pandas
.
core
.
series
.
Series
,
typing
.
List
[
typing
.
Union
[
str
,
bigframes
.
series
.
Series
,
pandas
.
core
.
series
.
Series
]
],
typing
.
Tuple
[
typing
.
Union
[
str
,
bigframes
.
series
.
Series
,
pandas
.
core
.
series
.
Series
],
...
],
],
*
,
connection_id
:
str
|
None
=
None
,
endpoint
:
str
|
None
=
None
,
request_type
:
typing
.
Literal
[
"dedicated"
,
"shared"
,
"unspecified"
]
=
"unspecified"
,
model_params
:
typing
.
Optional
[
typing
.
Mapping
[
typing
.
Any
,
typing
.
Any
]]
=
None
)
-
> bigframes
.
series
.
Series
Returns the AI analysis based on the prompt, which can be any combination of text and unstructured data.
Examples:
>>> import bigframes.pandas as bpd
>>> import bigframes.bigquery as bbq
>>> bpd.options.display.progress_bar = None
>>> df = bpd.DataFrame({
... "col_1": ["apple", "bear", "pear"],
... "col_2": ["fruit", "animal", "animal"]
... })
>>> bbq.ai.generate_bool((df["col_1"], " is a ", df["col_2"]))
0 {'result': True, 'full_response': '{"candidate...
1 {'result': True, 'full_response': '{"candidate...
2 {'result': False, 'full_response': '{"candidat...
dtype: struct<result: bool, full_response: extension<dbjson<JSONArrowType>>, status: string>[pyarrow]
>>> bbq.ai.generate_bool((df["col_1"], " is a ", df["col_2"])).struct.field("result")
0 True
1 True
2 False
Name: result, dtype: boolean
prompt
Series List[str|Series] Tuple[str|Series, ...]
A mixture of Series and string literals that specifies the prompt to send to the model. The Series can be BigFrames Series or pandas Series.
connection_id
str, optional
Specifies the connection to use to communicate with the model. For example, myproject.us.myconnection
. If not provided, the connection from the current session will be used.
endpoint
str, optional
Specifies the Vertex AI endpoint to use for the model. For example "gemini-2.5-flash"
. You can specify any generally available or preview Gemini model. If you specify the model name, BigQuery ML automatically identifies and uses the full endpoint of the model. If you don't specify an ENDPOINT value, BigQuery ML selects a recent stable version of Gemini to use.
request_type
Literal["dedicated", "shared", "unspecified"]
Specifies the type of inference request to send to the Gemini model. The request type determines what quota the request uses. * "dedicated": function only uses Provisioned Throughput quota. The function returns the error Provisioned throughput is not purchased or is not active if Provisioned Throughput quota isn't available. * "shared": the function only uses dynamic shared quota (DSQ), even if you have purchased Provisioned Throughput quota. * "unspecified": If you haven't purchased Provisioned Throughput quota, the function uses DSQ quota. If you have purchased Provisioned Throughput quota, the function uses the Provisioned Throughput quota first. If requests exceed the Provisioned Throughput quota, the overflow traffic uses DSQ quota.
model_params
Mapping[Any, Any]
Provides additional parameters to the model. The MODEL_PARAMS value must conform to the generateContent request body format.
generate_int
generate_int
(
prompt
:
typing
.
Union
[
bigframes
.
series
.
Series
,
pandas
.
core
.
series
.
Series
,
typing
.
List
[
typing
.
Union
[
str
,
bigframes
.
series
.
Series
,
pandas
.
core
.
series
.
Series
]
],
typing
.
Tuple
[
typing
.
Union
[
str
,
bigframes
.
series
.
Series
,
pandas
.
core
.
series
.
Series
],
...
],
],
*
,
connection_id
:
str
|
None
=
None
,
endpoint
:
str
|
None
=
None
,
request_type
:
typing
.
Literal
[
"dedicated"
,
"shared"
,
"unspecified"
]
=
"unspecified"
,
model_params
:
typing
.
Optional
[
typing
.
Mapping
[
typing
.
Any
,
typing
.
Any
]]
=
None
)
-
> bigframes
.
series
.
Series
Returns the AI analysis based on the prompt, which can be any combination of text and unstructured data.
Examples:
>>> import bigframes.pandas as bpd
>>> import bigframes.bigquery as bbq
>>> bpd.options.display.progress_bar = None
>>> animal = bpd.Series(["Kangaroo", "Rabbit", "Spider"])
>>> bbq.ai.generate_int(("How many legs does a ", animal, " have?"))
0 {'result': 2, 'full_response': '{"candidates":...
1 {'result': 4, 'full_response': '{"candidates":...
2 {'result': 8, 'full_response': '{"candidates":...
dtype: struct<result: int64, full_response: extension<dbjson<JSONArrowType>>, status: string>[pyarrow]
>>> bbq.ai.generate_int(("How many legs does a ", animal, " have?")).struct.field("result")
0 2
1 4
2 8
Name: result, dtype: Int64
prompt
Series List[str|Series] Tuple[str|Series, ...]
A mixture of Series and string literals that specifies the prompt to send to the model. The Series can be BigFrames Series or pandas Series.
connection_id
str, optional
Specifies the connection to use to communicate with the model. For example, myproject.us.myconnection
. If not provided, the connection from the current session will be used.
endpoint
str, optional
Specifies the Vertex AI endpoint to use for the model. For example "gemini-2.5-flash"
. You can specify any generally available or preview Gemini model. If you specify the model name, BigQuery ML automatically identifies and uses the full endpoint of the model. If you don't specify an ENDPOINT value, BigQuery ML selects a recent stable version of Gemini to use.
request_type
Literal["dedicated", "shared", "unspecified"]
Specifies the type of inference request to send to the Gemini model. The request type determines what quota the request uses. * "dedicated": function only uses Provisioned Throughput quota. The function returns the error Provisioned throughput is not purchased or is not active if Provisioned Throughput quota isn't available. * "shared": the function only uses dynamic shared quota (DSQ), even if you have purchased Provisioned Throughput quota. * "unspecified": If you haven't purchased Provisioned Throughput quota, the function uses DSQ quota. If you have purchased Provisioned Throughput quota, the function uses the Provisioned Throughput quota first. If requests exceed the Provisioned Throughput quota, the overflow traffic uses DSQ quota.
model_params
Mapping[Any, Any]
Provides additional parameters to the model. The MODEL_PARAMS value must conform to the generateContent request body format.

