Module ai (2.25.0)

This module integrates BigQuery built-in AI functions for use with Series/DataFrame objects, such as AI.GENERATE_BOOL: https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-ai-generate-bool

Modules Functions

classify

  classify 
 ( 
 input 
 : 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 pandas 
 . 
 core 
 . 
 series 
 . 
 Series 
 , 
 typing 
 . 
 List 
 [ 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 pandas 
 . 
 core 
 . 
 series 
 . 
 Series 
 ] 
 ], 
 typing 
 . 
 Tuple 
 [ 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 pandas 
 . 
 core 
 . 
 series 
 . 
 Series 
 ], 
 ... 
 ], 
 ], 
 categories 
 : 
 tuple 
 [ 
 str 
 , 
 ... 
 ] 
 | 
 list 
 [ 
 str 
 ], 
 * 
 , 
 connection_id 
 : 
 str 
 | 
 None 
 = 
 None 
 ) 
 - 
> bigframes 
 . 
 series 
 . 
 Series 
 

Classifies a given input into one of the specified categories. It will always return one of the provided categories best fit the prompt input.

Examples:

 >>> import bigframes.pandas as bpd
>>> import bigframes.bigquery as bbq
>>> bpd.options.display.progress_bar = None
>>> df = bpd.DataFrame({'creature': ['Cat', 'Salmon']})
>>> df['type'] = bbq.ai.classify(df['creature'], ['Mammal', 'Fish'])
>>> df
  creature    type
0      Cat  Mammal
1   Salmon    Fish
<BLANKLINE>
[2 rows x 2 columns] 
Parameters
Name
Description
input
str Series List[str|Series] Tuple[str|Series, ...]

A mixture of Series and string literals that specifies the input to send to the model. The Series can be BigFrames Series or pandas Series.

categories
tuple[str, ...] list[str]

Categories to classify the input into.

connection_id
str, optional

Specifies the connection to use to communicate with the model. For example, myproject.us.myconnection . If not provided, the connection from the current session will be used.

Returns
Type
Description
A new series of strings.

generate

  generate 
 ( 
 prompt 
 : 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 pandas 
 . 
 core 
 . 
 series 
 . 
 Series 
 , 
 typing 
 . 
 List 
 [ 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 pandas 
 . 
 core 
 . 
 series 
 . 
 Series 
 ] 
 ], 
 typing 
 . 
 Tuple 
 [ 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 pandas 
 . 
 core 
 . 
 series 
 . 
 Series 
 ], 
 ... 
 ], 
 ], 
 * 
 , 
 connection_id 
 : 
 str 
 | 
 None 
 = 
 None 
 , 
 endpoint 
 : 
 str 
 | 
 None 
 = 
 None 
 , 
 request_type 
 : 
 typing 
 . 
 Literal 
 [ 
 "dedicated" 
 , 
 "shared" 
 , 
 "unspecified" 
 ] 
 = 
 "unspecified" 
 , 
 model_params 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Mapping 
 [ 
 typing 
 . 
 Any 
 , 
 typing 
 . 
 Any 
 ]] 
 = 
 None 
 , 
 output_schema 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Mapping 
 [ 
 str 
 , 
 str 
 ]] 
 = 
 None 
 ) 
 - 
> bigframes 
 . 
 series 
 . 
 Series 
 

Returns the AI analysis based on the prompt, which can be any combination of text and unstructured data.

Examples:

 >>> import bigframes.pandas as bpd
>>> import bigframes.bigquery as bbq
>>> bpd.options.display.progress_bar = None
>>> country = bpd.Series(["Japan", "Canada"])
>>> bbq.ai.generate(("What's the capital city of ", country, " one word only"))
0    {'result': 'Tokyo\n', 'full_response': '{"cand...
1    {'result': 'Ottawa\n', 'full_response': '{"can...
dtype: struct<result: string, full_response: extension<dbjson<JSONArrowType>>, status: string>[pyarrow]

>>> bbq.ai.generate(("What's the capital city of ", country, " one word only")).struct.field("result")
0     Tokyo\n
1    Ottawa\n
Name: result, dtype: string 

You get structured output when the output_schema parameter is set:

 >>> animals = bpd.Series(["Rabbit", "Spider"])
>>> bbq.ai.generate(animals, output_schema={"number_of_legs": "INT64", "is_herbivore": "BOOL"})
0    {'is_herbivore': True, 'number_of_legs': 4, 'f...
1    {'is_herbivore': False, 'number_of_legs': 8, '...
dtype: struct<is_herbivore: bool, number_of_legs: int64, full_response: extension<dbjson<JSONArrowType>>, status: string>[pyarrow] 
Parameters
Name
Description
prompt
str Series List[str|Series] Tuple[str|Series, ...]

A mixture of Series and string literals that specifies the prompt to send to the model. The Series can be BigFrames Series or pandas Series.

connection_id
str, optional

Specifies the connection to use to communicate with the model. For example, myproject.us.myconnection . If not provided, the connection from the current session will be used.

endpoint
str, optional

Specifies the Vertex AI endpoint to use for the model. For example "gemini-2.5-flash" . You can specify any generally available or preview Gemini model. If you specify the model name, BigQuery ML automatically identifies and uses the full endpoint of the model. If you don't specify an ENDPOINT value, BigQuery ML selects a recent stable version of Gemini to use.

request_type
Literal["dedicated", "shared", "unspecified"]

Specifies the type of inference request to send to the Gemini model. The request type determines what quota the request uses. * "dedicated": function only uses Provisioned Throughput quota. The function returns the error Provisioned throughput is not purchased or is not active if Provisioned Throughput quota isn't available. * "shared": the function only uses dynamic shared quota (DSQ), even if you have purchased Provisioned Throughput quota. * "unspecified": If you haven't purchased Provisioned Throughput quota, the function uses DSQ quota. If you have purchased Provisioned Throughput quota, the function uses the Provisioned Throughput quota first. If requests exceed the Provisioned Throughput quota, the overflow traffic uses DSQ quota.

model_params
Mapping[Any, Any]

Provides additional parameters to the model. The MODEL_PARAMS value must conform to the generateContent request body format.

output_schema
Mapping[str, str]

A mapping value that specifies the schema of the output, in the form {field_name: data_type}. Supported data types include STRING , INT64 , FLOAT64 , BOOL , ARRAY , and STRUCT .

Returns
Type
Description
A new struct Series with the result data. The struct contains these fields: * "result": a STRING value containing the model's response to the prompt. The result is None if the request fails or is filtered by responsible AI. If you specify an output schema then result is replaced by your custom schema. * "full_response": a JSON value containing the response from the projects.locations.endpoints.generateContent call to the model. The generated text is in the text element. * "status": a STRING value that contains the API response status for the corresponding row. This value is empty if the operation was successful.

generate_bool

  generate_bool 
 ( 
 prompt 
 : 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 pandas 
 . 
 core 
 . 
 series 
 . 
 Series 
 , 
 typing 
 . 
 List 
 [ 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 pandas 
 . 
 core 
 . 
 series 
 . 
 Series 
 ] 
 ], 
 typing 
 . 
 Tuple 
 [ 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 pandas 
 . 
 core 
 . 
 series 
 . 
 Series 
 ], 
 ... 
 ], 
 ], 
 * 
 , 
 connection_id 
 : 
 str 
 | 
 None 
 = 
 None 
 , 
 endpoint 
 : 
 str 
 | 
 None 
 = 
 None 
 , 
 request_type 
 : 
 typing 
 . 
 Literal 
 [ 
 "dedicated" 
 , 
 "shared" 
 , 
 "unspecified" 
 ] 
 = 
 "unspecified" 
 , 
 model_params 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Mapping 
 [ 
 typing 
 . 
 Any 
 , 
 typing 
 . 
 Any 
 ]] 
 = 
 None 
 ) 
 - 
> bigframes 
 . 
 series 
 . 
 Series 
 

Returns the AI analysis based on the prompt, which can be any combination of text and unstructured data.

Examples:

 >>> import bigframes.pandas as bpd
>>> import bigframes.bigquery as bbq
>>> bpd.options.display.progress_bar = None
>>> df = bpd.DataFrame({
...     "col_1": ["apple", "bear", "pear"],
...     "col_2": ["fruit", "animal", "animal"]
... })
>>> bbq.ai.generate_bool((df["col_1"], " is a ", df["col_2"]))
0    {'result': True, 'full_response': '{"candidate...
1    {'result': True, 'full_response': '{"candidate...
2    {'result': False, 'full_response': '{"candidat...
dtype: struct<result: bool, full_response: extension<dbjson<JSONArrowType>>, status: string>[pyarrow]

>>> bbq.ai.generate_bool((df["col_1"], " is a ", df["col_2"])).struct.field("result")
0     True
1     True
2    False
Name: result, dtype: boolean 
Parameters
Name
Description
prompt
str Series List[str|Series] Tuple[str|Series, ...]

A mixture of Series and string literals that specifies the prompt to send to the model. The Series can be BigFrames Series or pandas Series.

connection_id
str, optional

Specifies the connection to use to communicate with the model. For example, myproject.us.myconnection . If not provided, the connection from the current session will be used.

endpoint
str, optional

Specifies the Vertex AI endpoint to use for the model. For example "gemini-2.5-flash" . You can specify any generally available or preview Gemini model. If you specify the model name, BigQuery ML automatically identifies and uses the full endpoint of the model. If you don't specify an ENDPOINT value, BigQuery ML selects a recent stable version of Gemini to use.

request_type
Literal["dedicated", "shared", "unspecified"]

Specifies the type of inference request to send to the Gemini model. The request type determines what quota the request uses. * "dedicated": function only uses Provisioned Throughput quota. The function returns the error Provisioned throughput is not purchased or is not active if Provisioned Throughput quota isn't available. * "shared": the function only uses dynamic shared quota (DSQ), even if you have purchased Provisioned Throughput quota. * "unspecified": If you haven't purchased Provisioned Throughput quota, the function uses DSQ quota. If you have purchased Provisioned Throughput quota, the function uses the Provisioned Throughput quota first. If requests exceed the Provisioned Throughput quota, the overflow traffic uses DSQ quota.

model_params
Mapping[Any, Any]

Provides additional parameters to the model. The MODEL_PARAMS value must conform to the generateContent request body format.

Returns
Type
Description
A new struct Series with the result data. The struct contains these fields: * "result": a BOOL value containing the model's response to the prompt. The result is None if the request fails or is filtered by responsible AI. * "full_response": a JSON value containing the response from the projects.locations.endpoints.generateContent call to the model. The generated text is in the text element. * "status": a STRING value that contains the API response status for the corresponding row. This value is empty if the operation was successful.

generate_double

  generate_double 
 ( 
 prompt 
 : 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 pandas 
 . 
 core 
 . 
 series 
 . 
 Series 
 , 
 typing 
 . 
 List 
 [ 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 pandas 
 . 
 core 
 . 
 series 
 . 
 Series 
 ] 
 ], 
 typing 
 . 
 Tuple 
 [ 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 pandas 
 . 
 core 
 . 
 series 
 . 
 Series 
 ], 
 ... 
 ], 
 ], 
 * 
 , 
 connection_id 
 : 
 str 
 | 
 None 
 = 
 None 
 , 
 endpoint 
 : 
 str 
 | 
 None 
 = 
 None 
 , 
 request_type 
 : 
 typing 
 . 
 Literal 
 [ 
 "dedicated" 
 , 
 "shared" 
 , 
 "unspecified" 
 ] 
 = 
 "unspecified" 
 , 
 model_params 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Mapping 
 [ 
 typing 
 . 
 Any 
 , 
 typing 
 . 
 Any 
 ]] 
 = 
 None 
 ) 
 - 
> bigframes 
 . 
 series 
 . 
 Series 
 

Returns the AI analysis based on the prompt, which can be any combination of text and unstructured data.

Examples:

 >>> import bigframes.pandas as bpd
>>> import bigframes.bigquery as bbq
>>> bpd.options.display.progress_bar = None
>>> animal = bpd.Series(["Kangaroo", "Rabbit", "Spider"])
>>> bbq.ai.generate_double(("How many legs does a ", animal, " have?"))
0    {'result': 2.0, 'full_response': '{"candidates...
1    {'result': 4.0, 'full_response': '{"candidates...
2    {'result': 8.0, 'full_response': '{"candidates...
dtype: struct<result: double, full_response: extension<dbjson<JSONArrowType>>, status: string>[pyarrow]

>>> bbq.ai.generate_double(("How many legs does a ", animal, " have?")).struct.field("result")
0    2.0
1    4.0
2    8.0
Name: result, dtype: Float64 
Parameters
Name
Description
prompt
str Series List[str|Series] Tuple[str|Series, ...]

A mixture of Series and string literals that specifies the prompt to send to the model. The Series can be BigFrames Series or pandas Series.

connection_id
str, optional

Specifies the connection to use to communicate with the model. For example, myproject.us.myconnection . If not provided, the connection from the current session will be used.

endpoint
str, optional

Specifies the Vertex AI endpoint to use for the model. For example "gemini-2.5-flash" . You can specify any generally available or preview Gemini model. If you specify the model name, BigQuery ML automatically identifies and uses the full endpoint of the model. If you don't specify an ENDPOINT value, BigQuery ML selects a recent stable version of Gemini to use.

request_type
Literal["dedicated", "shared", "unspecified"]

Specifies the type of inference request to send to the Gemini model. The request type determines what quota the request uses. * "dedicated": function only uses Provisioned Throughput quota. The function returns the error Provisioned throughput is not purchased or is not active if Provisioned Throughput quota isn't available. * "shared": the function only uses dynamic shared quota (DSQ), even if you have purchased Provisioned Throughput quota. * "unspecified": If you haven't purchased Provisioned Throughput quota, the function uses DSQ quota. If you have purchased Provisioned Throughput quota, the function uses the Provisioned Throughput quota first. If requests exceed the Provisioned Throughput quota, the overflow traffic uses DSQ quota.

model_params
Mapping[Any, Any]

Provides additional parameters to the model. The MODEL_PARAMS value must conform to the generateContent request body format.

Returns
Type
Description
A new struct Series with the result data. The struct contains these fields: * "result": an DOUBLE value containing the model's response to the prompt. The result is None if the request fails or is filtered by responsible AI. * "full_response": a JSON value containing the response from the projects.locations.endpoints.generateContent call to the model. The generated text is in the text element. * "status": a STRING value that contains the API response status for the corresponding row. This value is empty if the operation was successful.

generate_int

  generate_int 
 ( 
 prompt 
 : 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 pandas 
 . 
 core 
 . 
 series 
 . 
 Series 
 , 
 typing 
 . 
 List 
 [ 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 pandas 
 . 
 core 
 . 
 series 
 . 
 Series 
 ] 
 ], 
 typing 
 . 
 Tuple 
 [ 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 pandas 
 . 
 core 
 . 
 series 
 . 
 Series 
 ], 
 ... 
 ], 
 ], 
 * 
 , 
 connection_id 
 : 
 str 
 | 
 None 
 = 
 None 
 , 
 endpoint 
 : 
 str 
 | 
 None 
 = 
 None 
 , 
 request_type 
 : 
 typing 
 . 
 Literal 
 [ 
 "dedicated" 
 , 
 "shared" 
 , 
 "unspecified" 
 ] 
 = 
 "unspecified" 
 , 
 model_params 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Mapping 
 [ 
 typing 
 . 
 Any 
 , 
 typing 
 . 
 Any 
 ]] 
 = 
 None 
 ) 
 - 
> bigframes 
 . 
 series 
 . 
 Series 
 

Returns the AI analysis based on the prompt, which can be any combination of text and unstructured data.

Examples:

 >>> import bigframes.pandas as bpd
>>> import bigframes.bigquery as bbq
>>> bpd.options.display.progress_bar = None
>>> animal = bpd.Series(["Kangaroo", "Rabbit", "Spider"])
>>> bbq.ai.generate_int(("How many legs does a ", animal, " have?"))
0    {'result': 2, 'full_response': '{"candidates":...
1    {'result': 4, 'full_response': '{"candidates":...
2    {'result': 8, 'full_response': '{"candidates":...
dtype: struct<result: int64, full_response: extension<dbjson<JSONArrowType>>, status: string>[pyarrow]

>>> bbq.ai.generate_int(("How many legs does a ", animal, " have?")).struct.field("result")
0    2
1    4
2    8
Name: result, dtype: Int64 
Parameters
Name
Description
prompt
str Series List[str|Series] Tuple[str|Series, ...]

A mixture of Series and string literals that specifies the prompt to send to the model. The Series can be BigFrames Series or pandas Series.

connection_id
str, optional

Specifies the connection to use to communicate with the model. For example, myproject.us.myconnection . If not provided, the connection from the current session will be used.

endpoint
str, optional

Specifies the Vertex AI endpoint to use for the model. For example "gemini-2.5-flash" . You can specify any generally available or preview Gemini model. If you specify the model name, BigQuery ML automatically identifies and uses the full endpoint of the model. If you don't specify an ENDPOINT value, BigQuery ML selects a recent stable version of Gemini to use.

request_type
Literal["dedicated", "shared", "unspecified"]

Specifies the type of inference request to send to the Gemini model. The request type determines what quota the request uses. * "dedicated": function only uses Provisioned Throughput quota. The function returns the error Provisioned throughput is not purchased or is not active if Provisioned Throughput quota isn't available. * "shared": the function only uses dynamic shared quota (DSQ), even if you have purchased Provisioned Throughput quota. * "unspecified": If you haven't purchased Provisioned Throughput quota, the function uses DSQ quota. If you have purchased Provisioned Throughput quota, the function uses the Provisioned Throughput quota first. If requests exceed the Provisioned Throughput quota, the overflow traffic uses DSQ quota.

model_params
Mapping[Any, Any]

Provides additional parameters to the model. The MODEL_PARAMS value must conform to the generateContent request body format.

Returns
Type
Description
A new struct Series with the result data. The struct contains these fields: * "result": an integer (INT64) value containing the model's response to the prompt. The result is None if the request fails or is filtered by responsible AI. * "full_response": a JSON value containing the response from the projects.locations.endpoints.generateContent call to the model. The generated text is in the text element. * "status": a STRING value that contains the API response status for the corresponding row. This value is empty if the operation was successful.

if_

  if_ 
 ( 
 prompt 
 : 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 pandas 
 . 
 core 
 . 
 series 
 . 
 Series 
 , 
 typing 
 . 
 List 
 [ 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 pandas 
 . 
 core 
 . 
 series 
 . 
 Series 
 ] 
 ], 
 typing 
 . 
 Tuple 
 [ 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 pandas 
 . 
 core 
 . 
 series 
 . 
 Series 
 ], 
 ... 
 ], 
 ], 
 * 
 , 
 connection_id 
 : 
 str 
 | 
 None 
 = 
 None 
 ) 
 - 
> bigframes 
 . 
 series 
 . 
 Series 
 

Evaluates the prompt to True or False. Compared to ai.generate_bool() , this function provides optimization such that not all rows are evaluated with the LLM.

Examples:

 >>> import bigframes.pandas as bpd
>>> import bigframes.bigquery as bbq
>>> bpd.options.display.progress_bar = None
>>> us_state = bpd.Series(["Massachusetts", "Illinois", "Hawaii"])
>>> bbq.ai.if_((us_state, " has a city called Springfield"))
0     True
1     True
2    False
dtype: boolean

>>> us_state[bbq.ai.if_((us_state, " has a city called Springfield"))]
0    Massachusetts
1         Illinois
dtype: string 
Parameters
Name
Description
prompt
str Series List[str|Series] Tuple[str|Series, ...]

A mixture of Series and string literals that specifies the prompt to send to the model. The Series can be BigFrames Series or pandas Series.

connection_id
str, optional

Specifies the connection to use to communicate with the model. For example, myproject.us.myconnection . If not provided, the connection from the current session will be used.

Returns
Type
Description
A new series of bools.

score

  score 
 ( 
 prompt 
 : 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 pandas 
 . 
 core 
 . 
 series 
 . 
 Series 
 , 
 typing 
 . 
 List 
 [ 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 pandas 
 . 
 core 
 . 
 series 
 . 
 Series 
 ] 
 ], 
 typing 
 . 
 Tuple 
 [ 
 typing 
 . 
 Union 
 [ 
 str 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 pandas 
 . 
 core 
 . 
 series 
 . 
 Series 
 ], 
 ... 
 ], 
 ], 
 * 
 , 
 connection_id 
 : 
 str 
 | 
 None 
 = 
 None 
 ) 
 - 
> bigframes 
 . 
 series 
 . 
 Series 
 

Computes a score based on rubrics described in natural language. It will return a double value. There is no fixed range for the score returned. To get high quality results, provide a scoring rubric with examples in the prompt.

Examples:

 >>> import bigframes.pandas as bpd
>>> import bigframes.bigquery as bbq
>>> bpd.options.display.progress_bar = None
>>> animal = bpd.Series(["Tiger", "Rabbit", "Blue Whale"])
>>> bbq.ai.score(("Rank the relative weights of ", animal, " on the scale from 1 to 3")) # doctest: +SKIP
0    2.0
1    1.0
2    3.0
dtype: Float64 
Parameters
Name
Description
prompt
str Series List[str|Series] Tuple[str|Series, ...]

A mixture of Series and string literals that specifies the prompt to send to the model. The Series can be BigFrames Series or pandas Series.

connection_id
str, optional

Specifies the connection to use to communicate with the model. For example, myproject.us.myconnection . If not provided, the connection from the current session will be used.

Returns
Type
Description
A new series of double (float) values.
Design a Mobile Site
View Site in Mobile | Classic
Share by: