Class Pipeline (2.17.0)

  Pipeline 
 ( 
 steps 
 : 
 typing 
 . 
 List 
 [ 
 typing 
 . 
 Tuple 
 [ 
 str 
 , 
 bigframes 
 . 
 ml 
 . 
 base 
 . 
 BaseEstimator 
 ]]) 
 

Pipeline of transforms with a final estimator.

Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be transforms . That is, they must implement fit and transform methods. The final estimator only needs to implement fit .

The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. This simplifies code and allows for deploying an estimator and preprocessing together, e.g. with Pipeline.to_gbq(...).

Methods

__repr__

  __repr__ 
 () 
 

Print the estimator's constructor with all non-default parameter values.

fit

  fit 
 ( 
 X 
 : 
 typing 
 . 
 Union 
 [ 
 bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 ], 
 y 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Union 
 [ 
 bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 ] 
 ] 
 = 
 None 
 , 
 ) 
 - 
> bigframes 
 . 
 ml 
 . 
 pipeline 
 . 
 Pipeline 
 

Fit the model.

Fit all the transformers one after the other and transform the data. Finally, fit the transformed data using the final estimator.

Parameters
Name
Description
X
bigframes.dataframe.DataFrame or bigframes.series.Series

A DataFrame or Series representing training data. Must match the input requirements of the first step of the pipeline.

y
bigframes.dataframe.DataFrame or bigframes.series.Series

A DataFrame or Series representing training targets, if applicable.

Returns
Type
Description
Pipeline
Pipeline with fitted steps.

get_params

  get_params 
 ( 
 deep 
 : 
 bool 
 = 
 True 
 ) 
 - 
> typing 
 . 
 Dict 
 [ 
 str 
 , 
 typing 
 . 
 Any 
 ] 
 

Get parameters for this estimator.

Parameter
Name
Description
deep
bool, default True

Default True . If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns
Type
Description
Dictionary
A dictionary of parameter names mapped to their values.

predict

  predict 
 ( 
 X 
 : 
 typing 
 . 
 Union 
 [ 
 bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 , 
 pandas 
 . 
 core 
 . 
 frame 
 . 
 DataFrame 
 , 
 pandas 
 . 
 core 
 . 
 series 
 . 
 Series 
 , 
 ], 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

API documentation for predict method.

score

  score 
 ( 
 X 
 : 
 typing 
 . 
 Union 
 [ 
 bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 ], 
 y 
 : 
 typing 
 . 
 Optional 
 [ 
 typing 
 . 
 Union 
 [ 
 bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 , 
 bigframes 
 . 
 series 
 . 
 Series 
 ] 
 ] 
 = 
 None 
 , 
 ) 
 - 
> bigframes 
 . 
 dataframe 
 . 
 DataFrame 
 

API documentation for score method.

to_gbq

  to_gbq 
 ( 
 model_name 
 : 
 str 
 , 
 replace 
 : 
 bool 
 = 
 False 
 ) 
 - 
> bigframes 
 . 
 ml 
 . 
 pipeline 
 . 
 Pipeline 
 

Save the pipeline to BigQuery.

Parameters
Name
Description
model_name
str

The name of the model(pipeline).

replace
bool, default False

Whether to replace if the model(pipeline) already exists. Default to False.

Returns
Type
Description
Pipeline
Saved model(pipeline).
Design a Mobile Site
View Site in Mobile | Classic
Share by: