Collect Sentry logs

Supported in:

This document explains how to ingest Sentry logs to Google Security Operations using Google Cloud Storage. Sentry produces operational data in the form of events, issues, performance monitoring data, and error tracking information. This integration lets you send these logs to Google SecOps for analysis and monitoring, providing visibility into application errors, performance issues, and user interactions within your Sentry-monitored applications.

Before you begin

Ensure that you have the following prerequisites:

  • A Google SecOps instance
  • A GCP project with Cloud Storage API enabled
  • Permissions to create and manage GCS buckets
  • Permissions to manage IAM policies on GCS buckets
  • Permissions to create Cloud Run functions, Pub/Sub topics, and Cloud Scheduler jobs
  • Privileged access to Sentry tenant (Auth Token with API scopes)

Collect Sentry prerequisites (IDs, API keys, org IDs, tokens)

  1. Sign in to Sentry.
  2. Find your Organization slug:
    • Go to Settings > Organization > Settings > Organization ID(the slug appears next to the org name).
  3. Create an Auth Token:
    1. Go to Settings > Developer Settings > Personal Tokens.
    2. Click Create New Token.
    3. Scopes (minimum): org:read , project:read , event:read .
    4. Click Create Token.
    5. Copy the token value (shown once). This is used as: Authorization: Bearer <token> .
  4. (If self-hosted): Note your base URL (for example, https://<your-domain> ); otherwise use https://sentry.io .

Create Google Cloud Storage bucket

  1. Go to the Google Cloud Console .
  2. Select your project or create a new one.
  3. In the navigation menu, go to Cloud Storage > Buckets.
  4. Click Create bucket.
  5. Provide the following configuration details:

    Setting Value
    Name your bucket Enter a globally unique name (for example, sentry-logs )
    Location type Choose based on your needs (Region, Dual-region, Multi-region)
    Location Select the location (for example, us-central1 )
    Storage class Standard (recommended for frequently accessed logs)
    Access control Uniform (recommended)
    Protection tools Optional: Enable object versioning or retention policy
  6. Click Create.

The Cloud Run function needs a service account with permissions to write to GCS bucket and be invoked by Pub/Sub.

  1. In the GCP Console, go to IAM & Admin > Service Accounts.
  2. Click Create Service Account.
  3. Provide the following configuration details:
    • Service account name: Enter sentry-logs-collector-sa .
    • Service account description: Enter Service account for Cloud Run function to collect Sentry logs .
  4. Click Create and Continue.
  5. In the Grant this service account access to projectsection, add the following roles:
    1. Click Select a role.
    2. Search for and select Storage Object Admin.
    3. Click + Add another role.
    4. Search for and select Cloud Run Invoker.
    5. Click + Add another role.
    6. Search for and select Cloud Functions Invoker.
  6. Click Continue.
  7. Click Done.

These roles are required for:

  • Storage Object Admin: Write logs to GCS bucket and manage state files
  • Cloud Run Invoker: Allow Pub/Sub to invoke the function
  • Cloud Functions Invoker: Allow function invocation

Grant IAM permissions on GCS bucket

Grant the service account write permissions on the GCS bucket:

  1. Go to Cloud Storage > Buckets.
  2. Click your bucket name.
  3. Go to the Permissionstab.
  4. Click Grant access.
  5. Provide the following configuration details:
    • Add principals: Enter the service account email (for example, sentry-logs-collector-sa@PROJECT_ID.iam.gserviceaccount.com ).
    • Assign roles: Select Storage Object Admin.
  6. Click Save.

Create Pub/Sub topic

Create a Pub/Sub topic that Cloud Scheduler will publish to and the Cloud Run function will subscribe to.

  1. In the GCP Console, go to Pub/Sub > Topics.
  2. Click Create topic.
  3. Provide the following configuration details:
    • Topic ID: Enter sentry-logs-trigger .
    • Leave other settings as default.
  4. Click Create.

Create Cloud Run function to collect logs

The Cloud Run function is triggered by Pub/Sub messages from Cloud Scheduler to fetch logs from Sentry API and writes them to GCS.

  1. In the GCP Console, go to Cloud Run.
  2. Click Create service.
  3. Select Function(use an inline editor to create a function).
  4. In the Configuresection, provide the following configuration details:

    Setting Value
    Service name sentry-logs-collector
    Region Select region matching your GCS bucket (for example, us-central1 )
    Runtime Select Python 3.12or later
  5. In the Trigger (optional)section:

    1. Click + Add trigger.
    2. Select Cloud Pub/Sub.
    3. In Select a Cloud Pub/Sub topic, choose the topic ( sentry-logs-trigger ).
    4. Click Save.
  6. In the Authenticationsection:

    1. Select Require authentication.
    2. Check Identity and Access Management (IAM).
  7. Scroll down and expand Containers, Networking, Security.

  8. Go to the Securitytab:

    • Service account: Select the service account ( sentry-logs-collector-sa ).
  9. Go to the Containerstab:

    1. Click Variables & Secrets.
    2. Click + Add variablefor each environment variable:
    Variable Name Example Value Description
    GCS_BUCKET
    sentry-logs GCS bucket name where data will be stored.
    GCS_PREFIX
    sentry/events/ Optional GCS prefix (subfolder) for objects.
    STATE_KEY
    sentry/events/state.json Optional state/checkpoint file key.
    SENTRY_ORG
    your-org-slug Sentry organization slug.
    SENTRY_AUTH_TOKEN
    sntrys_************************ Sentry Auth Token with org:read, project:read, event:read.
    SENTRY_API_BASE
    https://sentry.io Sentry API base URL (self-hosted: https://<your-domain> ).
    MAX_PROJECTS
    100 Maximum number of projects to process.
    MAX_PAGES_PER_PROJECT
    5 Maximum pages per project per execution.
  10. Scroll down in the Variables & Secretstab to Requests:

    • Request timeout: Enter 600 seconds (10 minutes).
  11. Go to the Settingstab in Containers:

    • In the Resourcessection:
      • Memory: Select 512 MiBor higher.
      • CPU: Select 1.
    • Click Done.
  12. Scroll to Execution environment:

    • Select Default(recommended).
  13. In the Revision scalingsection:

    • Minimum number of instances: Enter 0 .
    • Maximum number of instances: Enter 100 (or adjust based on expected load).
  14. Click Create.

  15. Wait for the service to be created (1-2 minutes).

  16. After the service is created, the inline code editoropens automatically.

Add function code

  1. Enter mainin Function entry point
  2. In the inline code editor, create two files:

    • First file: main.py:
      import 
      
     functions_framework 
     from 
      
     google.cloud 
      
     import 
      storage 
     
     import 
      
     json 
     import 
      
     os 
     import 
      
     urllib3 
     from 
      
     datetime 
      
     import 
     datetime 
     , 
     timezone 
     import 
      
     time 
     # Initialize HTTP client 
     http 
     = 
     urllib3 
     . 
     PoolManager 
     () 
     # Initialize Storage client 
     storage_client 
     = 
      storage 
     
     . 
      Client 
     
     () 
     @functions_framework 
     . 
     cloud_event 
     def 
      
     main 
     ( 
     cloud_event 
     ): 
      
     """ 
     Cloud Run function triggered by Pub/Sub to fetch Sentry events and write to GCS. 
     Args: 
     cloud_event: CloudEvent object containing Pub/Sub message 
     """ 
     # Get environment variables 
     bucket_name 
     = 
     os 
     . 
     environ 
     . 
     get 
     ( 
     'GCS_BUCKET' 
     ) 
     prefix 
     = 
     os 
     . 
     environ 
     . 
     get 
     ( 
     'GCS_PREFIX' 
     , 
     'sentry/events/' 
     ) 
     state_key 
     = 
     os 
     . 
     environ 
     . 
     get 
     ( 
     'STATE_KEY' 
     , 
     'sentry/events/state.json' 
     ) 
     org 
     = 
     os 
     . 
     environ 
     . 
     get 
     ( 
     'SENTRY_ORG' 
     , 
     '' 
     ) 
     . 
     strip 
     () 
     token 
     = 
     os 
     . 
     environ 
     . 
     get 
     ( 
     'SENTRY_AUTH_TOKEN' 
     , 
     '' 
     ) 
     . 
     strip 
     () 
     api_base 
     = 
     os 
     . 
     environ 
     . 
     get 
     ( 
     'SENTRY_API_BASE' 
     , 
     'https://sentry.io' 
     ) 
     . 
     rstrip 
     ( 
     '/' 
     ) 
     max_projects 
     = 
     int 
     ( 
     os 
     . 
     environ 
     . 
     get 
     ( 
     'MAX_PROJECTS' 
     , 
     '100' 
     )) 
     max_pages_per_project 
     = 
     int 
     ( 
     os 
     . 
     environ 
     . 
     get 
     ( 
     'MAX_PAGES_PER_PROJECT' 
     , 
     '5' 
     )) 
     if 
     not 
     all 
     ([ 
     bucket_name 
     , 
     org 
     , 
     token 
     ]): 
     print 
     ( 
     'Error: Missing required environment variables' 
     ) 
     return 
     try 
     : 
     # Get GCS bucket 
     bucket 
     = 
     storage_client 
     . 
      bucket 
     
     ( 
     bucket_name 
     ) 
     # Load state 
     state 
     = 
     load_state 
     ( 
     bucket 
     , 
     state_key 
     ) 
      state 
     
     . 
     setdefault 
     ( 
     'projects' 
     , 
     {}) 
     # Get list of projects 
     projects 
     = 
     list_projects 
     ( 
     api_base 
     , 
     org 
     , 
     token 
     , 
     max_projects 
     ) 
     print 
     ( 
     f 
     'Found 
     { 
     len 
     ( 
     projects 
     ) 
     } 
     projects' 
     ) 
     summary 
     = 
     [] 
     # Process each project 
     for 
     slug 
     in 
     projects 
     : 
     start_prev 
     = 
     state 
     [ 
     'projects' 
     ] 
     . 
     get 
     ( 
     slug 
     , 
     {}) 
     . 
     get 
     ( 
     'prev_cursor' 
     ) 
     res 
     = 
     fetch_project_events 
     ( 
     api_base 
     , 
     org 
     , 
     token 
     , 
     slug 
     , 
     start_prev 
     , 
     max_pages_per_project 
     , 
     bucket 
     , 
     prefix 
     ) 
     if 
     res 
     . 
     get 
     ( 
     'store_prev_cursor' 
     ): 
     state 
     [ 
     'projects' 
     ][ 
     slug 
     ] 
     = 
     { 
     'prev_cursor' 
     : 
     res 
     [ 
     'store_prev_cursor' 
     ]} 
     summary 
     . 
     append 
     ( 
     res 
     ) 
     # Save state 
     save_state 
     ( 
     bucket 
     , 
     state_key 
     , 
     state 
     ) 
     print 
     ( 
     f 
     'Successfully processed 
     { 
     len 
     ( 
     projects 
     ) 
     } 
     projects' 
     ) 
     print 
     ( 
     f 
     'Summary: 
     { 
     json 
     . 
     dumps 
     ( 
     summary 
     ) 
     } 
     ' 
     ) 
     except 
     Exception 
     as 
     e 
     : 
     print 
     ( 
     f 
     'Error processing logs: 
     { 
     str 
     ( 
     e 
     ) 
     } 
     ' 
     ) 
     raise 
     def 
      
     load_state 
     ( 
     bucket 
     , 
     key 
     ): 
      
     """Load state from GCS.""" 
     try 
     : 
     blob 
     = 
     bucket 
     . 
     blob 
     ( 
     key 
     ) 
     if 
     blob 
     . 
     exists 
     (): 
     state_data 
     = 
     blob 
     . 
      download_as_text 
     
     () 
     return 
     json 
     . 
     loads 
     ( 
     state_data 
     ) 
     if 
     state_data 
     else 
     { 
     'projects' 
     : 
     {}} 
     except 
     Exception 
     as 
     e 
     : 
     print 
     ( 
     f 
     'Warning: Could not load state: 
     { 
     str 
     ( 
     e 
     ) 
     } 
     ' 
     ) 
     return 
     { 
     'projects' 
     : 
     {}} 
     def 
      
     save_state 
     ( 
     bucket 
     , 
     key 
     , 
     state 
     ): 
      
     """Save state to GCS.""" 
     try 
     : 
     blob 
     = 
     bucket 
     . 
     blob 
     ( 
     key 
     ) 
     blob 
     . 
      upload_from_string 
     
     ( 
     json 
     . 
     dumps 
     ( 
     state 
     , 
     separators 
     = 
     ( 
     ',' 
     , 
     ':' 
     )), 
     content_type 
     = 
     'application/json' 
     ) 
     except 
     Exception 
     as 
     e 
     : 
     print 
     ( 
     f 
     'Warning: Could not save state: 
     { 
     str 
     ( 
     e 
     ) 
     } 
     ' 
     ) 
     def 
      
     sentry_request 
     ( 
     api_base 
     , 
     token 
     , 
     path 
     , 
     params 
     = 
     None 
     ): 
      
     """Make request to Sentry API.""" 
     url 
     = 
     f 
     " 
     { 
     api_base 
     }{ 
     path 
     } 
     " 
     if 
     params 
     : 
     url 
     = 
     f 
     " 
     { 
     url 
     } 
     ? 
     { 
     urllib3 
     . 
     request 
     . 
     urlencode 
     ( 
     params 
     ) 
     } 
     " 
     headers 
     = 
     { 
     'Authorization' 
     : 
     f 
     'Bearer 
     { 
     token 
     } 
     ' 
     , 
     'Accept' 
     : 
     'application/json' 
     , 
     'User-Agent' 
     : 
     'chronicle-gcs-sentry-function/1.0' 
     } 
     response 
     = 
     http 
     . 
     request 
     ( 
     'GET' 
     , 
     url 
     , 
     headers 
     = 
     headers 
     , 
     timeout 
     = 
     60.0 
     ) 
     data 
     = 
     json 
     . 
     loads 
     ( 
     response 
     . 
     data 
     . 
     decode 
     ( 
     'utf-8' 
     )) 
     link 
     = 
     response 
     . 
     headers 
     . 
     get 
     ( 
     'Link' 
     ) 
     return 
     data 
     , 
     link 
     def 
      
     parse_link_header 
     ( 
     link_header 
     ): 
      
     """Parse Link header to extract cursors.""" 
     if 
     not 
     link_header 
     : 
     return 
     None 
     , 
     False 
     , 
     None 
     , 
     False 
     prev_cursor 
     , 
     next_cursor 
     = 
     None 
     , 
     None 
     prev_more 
     , 
     next_more 
     = 
     False 
     , 
     False 
     parts 
     = 
     [ 
     p 
     . 
     strip 
     () 
     for 
     p 
     in 
     link_header 
     . 
     split 
     ( 
     ',' 
     )] 
     for 
     p 
     in 
     parts 
     : 
     if 
     '<' 
     not 
     in 
     p 
     or 
     '>' 
     not 
     in 
     p 
     : 
     continue 
     url 
     = 
     p 
     . 
     split 
     ( 
     '<' 
     , 
     1 
     )[ 
     1 
     ] 
     . 
     split 
     ( 
     '>' 
     , 
     1 
     )[ 
     0 
     ] 
     rel 
     = 
     'previous' 
     if 
     'rel="previous"' 
     in 
     p 
     else 
     ( 
     'next' 
     if 
     'rel="next"' 
     in 
     p 
     else 
     None 
     ) 
     has_more 
     = 
     'results="true"' 
     in 
     p 
     try 
     : 
     from 
      
     urllib.parse 
      
     import 
     urlparse 
     , 
     parse_qs 
     q 
     = 
     urlparse 
     ( 
     url 
     ) 
     . 
     query 
     cur 
     = 
     parse_qs 
     ( 
     q 
     ) 
     . 
     get 
     ( 
     'cursor' 
     , 
     [ 
     None 
     ])[ 
     0 
     ] 
     except 
     Exception 
     : 
     cur 
     = 
     None 
     if 
     rel 
     == 
     'previous' 
     : 
     prev_cursor 
     , 
     prev_more 
     = 
     cur 
     , 
     has_more 
     elif 
     rel 
     == 
     'next' 
     : 
     next_cursor 
     , 
     next_more 
     = 
     cur 
     , 
     has_more 
     return 
     prev_cursor 
     , 
     prev_more 
     , 
     next_cursor 
     , 
     next_more 
     def 
      
     write_page 
     ( 
     bucket 
     , 
     prefix 
     , 
     project_slug 
     , 
     payload 
     , 
     page_idx 
     ): 
      
     """Write page of events to GCS.""" 
     ts 
     = 
     time 
     . 
     gmtime 
     () 
     key 
     = 
     f 
     " 
     { 
     prefix 
     . 
     rstrip 
     ( 
     '/' 
     ) 
     } 
     / 
     { 
     time 
     . 
     strftime 
     ( 
     '%Y/%m/ 
     %d 
     ' 
     , 
      
     ts 
     ) 
     } 
     /sentry- 
     { 
     project_slug 
     } 
     - 
     { 
     page_idx 
     : 
     05d 
     } 
     .json" 
     blob 
     = 
     bucket 
     . 
     blob 
     ( 
     key 
     ) 
     blob 
     . 
      upload_from_string 
     
     ( 
     json 
     . 
     dumps 
     ( 
     payload 
     , 
     separators 
     = 
     ( 
     ',' 
     , 
     ':' 
     )), 
     content_type 
     = 
     'application/json' 
     ) 
     return 
     key 
     def 
      
     list_projects 
     ( 
     api_base 
     , 
     org 
     , 
     token 
     , 
     max_projects 
     ): 
      
     """List Sentry projects.""" 
     projects 
     , 
     cursor 
     = 
     [], 
     None 
     while 
     len 
     ( 
     projects 
     ) 
    < max_projects 
     : 
     params 
     = 
     { 
     'cursor' 
     : 
     cursor 
     } 
     if 
     cursor 
     else 
     {} 
     data 
     , 
     link 
     = 
     sentry_request 
     ( 
     api_base 
     , 
     token 
     , 
     f 
     '/api/0/organizations/ 
     { 
     org 
     } 
     /projects/' 
     , 
     params 
     ) 
     for 
     p 
     in 
     data 
     : 
     slug 
     = 
     p 
     . 
     get 
     ( 
     'slug' 
     ) 
     if 
     slug 
     : 
     projects 
     . 
     append 
     ( 
     slug 
     ) 
     if 
     len 
     ( 
     projects 
     ) 
    > = 
     max_projects 
     : 
     break 
     _ 
     , 
     _ 
     , 
     next_cursor 
     , 
     next_more 
     = 
     parse_link_header 
     ( 
     link 
     ) 
     cursor 
     = 
     next_cursor 
     if 
     next_more 
     else 
     None 
     if 
     not 
     next_more 
     : 
     break 
     return 
     projects 
     def 
      
     fetch_project_events 
     ( 
     api_base 
     , 
     org 
     , 
     token 
     , 
     project_slug 
     , 
     start_prev_cursor 
     , 
     max_pages 
     , 
     bucket 
     , 
     prefix 
     ): 
      
     """Fetch events for a project.""" 
     pages 
     = 
     0 
     total 
     = 
     0 
     latest_prev_cursor_to_store 
     = 
     None 
     def 
      
     fetch_one 
     ( 
     cursor 
     ): 
     nonlocal 
     pages 
     , 
     total 
     , 
     latest_prev_cursor_to_store 
     params 
     = 
     { 
     'cursor' 
     : 
     cursor 
     } 
     if 
     cursor 
     else 
     {} 
     data 
     , 
     link 
     = 
     sentry_request 
     ( 
     api_base 
     , 
     token 
     , 
     f 
     '/api/0/projects/ 
     { 
     org 
     } 
     / 
     { 
     project_slug 
     } 
     /events/' 
     , 
     params 
     ) 
     write_page 
     ( 
     bucket 
     , 
     prefix 
     , 
     project_slug 
     , 
     data 
     , 
     pages 
     ) 
     total 
     += 
     len 
     ( 
     data 
     ) 
     if 
     isinstance 
     ( 
     data 
     , 
     list 
     ) 
     else 
     0 
     prev_c 
     , 
     prev_more 
     , 
     next_c 
     , 
     next_more 
     = 
     parse_link_header 
     ( 
     link 
     ) 
     latest_prev_cursor_to_store 
     = 
     prev_c 
     or 
     latest_prev_cursor_to_store 
     pages 
     += 
     1 
     return 
     prev_c 
     , 
     prev_more 
     , 
     next_c 
     , 
     next_more 
     if 
     start_prev_cursor 
     : 
     # Poll new pages toward "previous" until no more 
     cur 
     = 
     start_prev_cursor 
     while 
     pages 
    < max_pages 
     : 
     prev_c 
     , 
     prev_more 
     , 
     _ 
     , 
     _ 
     = 
     fetch_one 
     ( 
     cur 
     ) 
     if 
     not 
     prev_more 
     : 
     break 
     cur 
     = 
     prev_c 
     else 
     : 
     # First run: start at newest, then backfill older pages 
     prev_c 
     , 
     _ 
     , 
     next_c 
     , 
     next_more 
     = 
     fetch_one 
     ( 
     None 
     ) 
     cur 
     = 
     next_c 
     while 
     next_more 
     and 
     pages 
    < max_pages 
     : 
     _ 
     , 
     _ 
     , 
     next_c 
     , 
     next_more 
     = 
     fetch_one 
     ( 
     cur 
     ) 
     cur 
     = 
     next_c 
     return 
     { 
     'project' 
     : 
     project_slug 
     , 
     'pages' 
     : 
     pages 
     , 
     'written' 
     : 
     total 
     , 
     'store_prev_cursor' 
     : 
     latest_prev_cursor_to_store 
     } 
     ``` 
     * 
     Second 
     file 
     : 
     ** 
     requirements 
     . 
     txt 
     : 
     ** 
     
    

    functions-framework 3.* google-cloud-storage 2.* urllib3>=2.0.0 ```

  3. Click Deployto save and deploy the function.

  4. Wait for deployment to complete (2-3 minutes).

Create Cloud Scheduler job

Cloud scheduler publishes messages to the Pub/Sub topic at regular intervals, triggering the Cloud Run function.

  1. In the GCP Console, go to Cloud Scheduler.
  2. Click Create Job.
  3. Provide the following configuration details:

    Setting Value
    Name sentry-logs-collector-hourly
    Region Select same region as Cloud Run function
    Frequency 0 * * * * (every hour, on the hour)
    Timezone Select timezone (UTC recommended)
    Target type Pub/Sub
    Topic Select the topic ( sentry-logs-trigger )
    Message body {} (empty JSON object)
  4. Click Create.

Schedule frequency options

  • Choose frequency based on log volume and latency requirements:

    Frequency Cron Expression Use Case
    Every 5 minutes
    */5 * * * * High-volume, low-latency
    Every 15 minutes
    */15 * * * * Medium volume
    Every hour
    0 * * * * Standard (recommended)
    Every 6 hours
    0 */6 * * * Low volume, batch processing
    Daily
    0 0 * * * Historical data collection

Test the scheduler job

  1. In the Cloud Schedulerconsole, find your job.
  2. Click Force runto trigger manually.
  3. Wait a few seconds and go to Cloud Run > Services > sentry-logs-collector > Logs.
  4. Verify the function executed successfully.
  5. Check the GCS bucket to confirm logs were written.

Google SecOps uses a unique service account to read data from your GCS bucket. You must grant this service account access to your bucket.

  1. Go to SIEM Settings > Feeds.
  2. Click Add New Feed.
  3. Click Configure a single feed.
  4. In the Feed namefield, enter a name for the feed (for example, Sentry Logs ).
  5. Select Google Cloud Storage V2as the Source type.
  6. Select Sentryas the Log type.
  7. Click Get Service Account. A unique service account email is displayed, for example:

      chronicle 
     - 
     12345678 
     @chronicle 
     - 
     gcp 
     - 
     prod 
     . 
     iam 
     . 
     gserviceaccount 
     . 
     com 
     
    
  8. Copy this email address for use in the next step.

The Google SecOps service account needs Storage Object Viewerrole on your GCS bucket.

  1. Go to Cloud Storage > Buckets.
  2. Click your bucket name.
  3. Go to the Permissionstab.
  4. Click Grant access.
  5. Provide the following configuration details:
    • Add principals: Paste the Google SecOps service account email.
    • Assign roles: Select Storage Object Viewer.
  6. Click Save.

Configure a feed in Google SecOps to ingest Sentry logs

  1. Go to SIEM Settings > Feeds.
  2. Click Add New Feed.
  3. Click Configure a single feed.
  4. In the Feed namefield, enter a name for the feed (for example, Sentry Logs ).
  5. Select Google Cloud Storage V2as the Source type.
  6. Select Sentryas the Log type.
  7. Click Next.
  8. Specify values for the following input parameters:

    • Storage bucket URL: Enter the GCS bucket URI with the prefix path:

       gs://sentry-logs/sentry/events/ 
      
      • Replace:

        • sentry-logs : Your GCS bucket name.
        • sentry/events/ : Optional prefix/folder path where logs are stored (leave empty for root).
      • Examples:

        • Root bucket: gs://company-logs/
        • With prefix: gs://company-logs/sentry-logs/
        • With subfolder: gs://company-logs/sentry/events/
    • Source deletion option: Select the deletion option according to your preference:

      • Never: Never deletes any files after transfers (recommended for testing).
      • Delete transferred files: Deletes files after successful transfer.
      • Delete transferred files and empty directories: Deletes files and empty directories after successful transfer.

    • Maximum File Age: Include files modified in the last number of days. Default is 180 days.

    • Asset namespace: The asset namespace .

    • Ingestion labels: The label to be applied to the events from this feed.

  9. Click Next.

  10. Review your new feed configuration in the Finalizescreen, and then click Submit.

Need more help? Get answers from Community members and Google SecOps professionals.

Create a Mobile Website
View Site in Mobile | Classic
Share by: