Analyze multimodal data with SQL and Python UDFs

This tutorial shows you how to analyze multimodal data by using SQL queries and Python user-defined functions (UDFs) .

This tutorial uses the product catalog from the public Cymbal pet store dataset.

Objectives

  • Use ObjectRef values to store image data alongside structured data in a BigQuery standard table .
  • Generate text based on image data from a standard table by using the AI.GENERATE_TABLE function .
  • Transform existing images to create new images by using a Python UDF.
  • Chunk PDFs for further analysis by using a Python UDF.
  • Use a Gemini model and the ML.GENERATE_TEXT function to analyze the chunked PDF data.
  • Generate embeddings based on image data from a standard table by using the ML.GENERATE_EMBEDDING function .
  • Process ordered multimodal data using arrays of ObjectRef values.

Costs

In this document, you use the following billable components of Google Cloud:

  • BigQuery : you incur costs for the data that you process in BigQuery.
  • BigQuery Python UDFs : you incur costs for using Python UDFs.
  • Cloud Storage : you incur costs for the objects stored in Cloud Storage.
  • Vertex AI : you incur costs for calls to Vertex AI models.

To generate a cost estimate based on your projected usage, use the pricing calculator .

New Google Cloud users might be eligible for a free trial .

For more information about, see the following pricing pages:

Before you begin

  1. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  2. Verify that billing is enabled for your Google Cloud project .

  3. Enable the BigQuery, BigQuery Connection, Cloud Storage, and Vertex AI APIs.

    Enable the APIs

Required roles

To get the permissions that you need to complete this tutorial, ask your administrator to grant you the following IAM roles:

  • Create a connection: BigQuery Connection Admin ( roles/bigquery.connectionAdmin )
  • Grant permissions to the connection's service account: Project IAM Admin ( roles/resourcemanager.projectIamAdmin )
  • Create a Cloud Storage bucket: Storage Admin ( roles/storage.admin )
  • Create datasets, models, UDFs, and tables, and run BigQuery jobs: BigQuery Admin ( roles/bigquery.admin )
  • Create URLs that let you read and modify Cloud Storage objects: BigQuery ObjectRef Admin ( roles/bigquery.objectRefAdmin )

For more information about granting roles, see Manage access to projects, folders, and organizations .

You might also be able to get the required permissions through custom roles or other predefined roles .

Set up

In this section, you create the dataset, connection, tables, and models used in this tutorial.

Create a dataset

Create a BigQuery dataset to contain the objects you create in this tutorial:

  1. In the Google Cloud console, go to the BigQuerypage.

    Go to BigQuery

  2. In the Explorerpane, select your project.

  3. Expand the Actionsoption and click Create dataset. The Create datasetpane opens.

  4. For Dataset ID, type cymbal_pets .

  5. Click Create dataset.

Create a bucket

Create a Cloud Storage bucket for storing transformed objects:

  1. Go to the Bucketspage.

    Go to Buckets

  2. Click Create.

  3. On the Create a bucketpage, in the Get startedsection, enter a globally unique name that meets the bucket name requirements .

  4. Click Create.

Create a connection

Create a Cloud resource connection and get the connection's service account. BigQuery uses the connection to access objects in Cloud Storage:

  1. Go to the BigQuerypage.

    Go to BigQuery

  2. In the Explorerpane, click Add data.

    The Add datadialog opens.

  3. In the Filter Bypane, in the Data Source Typesection, select Business Applications.

    Alternatively, in the Search for data sourcesfield, you can enter Vertex AI .

  4. In the Featured data sourcessection, click Vertex AI.

  5. Click the Vertex AI Models: BigQuery Federationsolution card.

  6. In the Connection typelist, select Vertex AI remote models, remote functions and BigLake (Cloud Resource).

  7. In the Connection IDfield, type cymbal_conn .

  8. Click Create connection.

  9. Click Go to connection.

  10. In the Connection infopane, copy the service account ID for use in a following step.

Grant permissions to the connection's service account

Grant the connection's service account the appropriate roles to access other services. You must grant these roles in the same project you created or selected in the Before you begin section. Granting the roles in a different project results in the error bqcx-1234567890-xxxx@gcp-sa-bigquery-condel.iam.gserviceaccount.com does not have the permission to access resource .

Grant permissions on the Cloud Storage bucket

Give the service account access to use objects in the bucket you created:

  1. Go to the Bucketspage.

    Go to Buckets

  2. Click the name of the bucket you created.

  3. Click Permissions.

  4. Click Grant access. The Grant accessdialog opens.

  5. In the New principalsfield, enter the service account ID that you copied earlier.

  6. In the Select a rolefield, choose Cloud Storage, and then select Storage Object User.

  7. Click Save.

Grant permissions on to use Vertex AI models

Give the service account access to use Vertex AI models:

  1. Go to the IAM & Adminpage.

    Go to IAM & Admin

  2. Click Grant access. The Grant accessdialog opens.

  3. In the New principalsfield, enter the service account ID that you copied earlier.

  4. In the Select a rolefield, select Vertex AI, and then select Vertex AI User.

  5. Click Save.

Create the tables of example data

Create tables to store the Cymbal pets product information.

Create the products table

Create a standard table that contains the Cymbal pets product information:

  1. In the Google Cloud console, go to the BigQuerypage.

    Go to BigQuery

  2. In the query editor, run the following query to create the products table:

     LOAD 
      
     DATA 
      
     OVERWRITE 
      
     cymbal_pets 
     . 
     products 
     FROM 
      
     FILES 
     ( 
      
     format 
      
     = 
      
     'avro' 
     , 
      
     uris 
      
     = 
      
     [ 
      
     'gs://cloud-samples-data/bigquery/tutorials/cymbal-pets/tables/products/products_*.avro' 
     ] 
     ); 
    

Create the product_images table

Create an object table that contains the Cymbal pets product images:

  • In the query editor of the BigQuerypage, run the following query to create the product_images table:

     CREATE 
      
     OR 
      
     REPLACE 
      
     EXTERNAL 
      
     TABLE 
      
     cymbal_pets 
     . 
     product_images 
      
     WITH 
      
     CONNECTION 
      
     `us.cymbal_conn` 
      
     OPTIONS 
      
     ( 
      
     object_metadata 
      
     = 
      
     'SIMPLE' 
     , 
      
     uris 
      
     = 
      
     [ 
     'gs://cloud-samples-data/bigquery/tutorials/cymbal-pets/images/*.png' 
     ] 
     , 
      
     max_staleness 
      
     = 
      
     INTERVAL 
      
     30 
      
     MINUTE 
     , 
      
     metadata_cache_mode 
      
     = 
      
     AUTOMATIC 
     ); 
    

Create the product_manuals table

Create an object table that contains the Cymbal pets product manuals:

  • In the query editor of the BigQuerypage, run the following query to create the product_manuals table:

     CREATE 
      
     OR 
      
     REPLACE 
      
     EXTERNAL 
      
     TABLE 
      
     cymbal_pets 
     . 
     product_manuals 
      
     WITH 
      
     CONNECTION 
      
     `us.cymbal_conn` 
      
     OPTIONS 
      
     ( 
      
     object_metadata 
      
     = 
      
     'SIMPLE' 
     , 
      
     uris 
      
     = 
      
     [ 
     'gs://cloud-samples-data/bigquery/tutorials/cymbal-pets/documents/*.pdf' 
     ] 
     ); 
    

Create a text generation model

Create a BigQuery ML remote model that represents a Vertex AI Gemini model:

  • In the query editor of the BigQuerypage, run the following query to create the remote model:

     CREATE 
      
     OR 
      
     REPLACE 
      
     MODEL 
      
     `cymbal_pets.gemini` 
      
     REMOTE 
      
     WITH 
      
     CONNECTION 
      
     `us.cymbal_conn` 
      
     OPTIONS 
      
     ( 
     ENDPOINT 
      
     = 
      
     'gemini-2.0-flash' 
     ); 
    

Create an embedding generation model

Create a BigQuery ML remote model that represents a Vertex AI multimodal embedding model:

  • In the query editor of the BigQuerypage, run the following query to create the remote model:

     CREATE 
      
     OR 
      
     REPLACE 
      
     MODEL 
      
     `cymbal_pets.embedding_model` 
      
     REMOTE 
      
     WITH 
      
     CONNECTION 
      
     `us.cymbal_conn` 
      
     OPTIONS 
      
     ( 
     ENDPOINT 
      
     = 
      
     'multimodalembedding@001' 
     ); 
    

Create a products_mm table with multimodal data

Create a products_mm table that contains an image column populated with product images from the product_images object table. The image column that is created is a STRUCT column that uses the ObjectRef format.

  1. In the query editor of the BigQuerypage, run the following query to create the products_mm table and populate the image column:

     CREATE 
      
     OR 
      
     REPLACE 
      
     TABLE 
      
     cymbal_pets 
     . 
     products_mm 
     AS 
     SELECT 
      
     products 
     . 
     * 
      
     EXCEPT 
      
     ( 
     uri 
     ), 
      
     ot 
     . 
     ref 
      
     AS 
      
     image 
      
     FROM 
      
     cymbal_pets 
     . 
     products 
     INNER 
      
     JOIN 
      
     cymbal_pets 
     . 
     product_images 
      
     ot 
     ON 
      
     ot 
     . 
     uri 
      
     = 
      
     products 
     . 
     uri 
     ; 
    
  2. In the query editor of the BigQuerypage, run the following query to view the image column data:

     SELECT 
      
     product_name 
     , 
      
     image 
     FROM 
      
     cymbal_pets 
     . 
     products_mm 
    

    The results look similar to the following:

    +--------------------------------+--------------------------------------+-----------------------------------------------+------------------------------------------------+
    | product_name                   | image.uri                            | image.version | image.authorizer              | image.details                                  |
    +--------------------------------+--------------------------------------+-----------------------------------------------+------------------------------------------------+
    |  AquaClear Aquarium Background | gs://cloud-samples-data/bigquery/    | 1234567891011 | myproject.region.myconnection | {"gcs_metadata":{"content_type":"image/png",   |
    |                                | tutorials/cymbal-pets/images/        |               |                               | "md5_hash":"494f63b9b137975ff3e7a11b060edb1d", |
    |                                | aquaclear-aquarium-background.png    |               |                               | "size":1282805,"updated":1742492680017000}}    |
    +--------------------------------+--------------------------------------+-----------------------------------------------+------------------------------------------------+
    |  AquaClear Aquarium            | gs://cloud-samples-data/bigquery/    | 2345678910112 | myproject.region.myconnection | {"gcs_metadata":{"content_type":"image/png",   |
    |  Gravel Vacuum                 | tutorials/cymbal-pets/images/        |               |                               | "md5_hash":"b7bfc2e2641a77a402a1937bcf0003fd", |
    |                                | aquaclear-aquarium-gravel-vacuum.png |               |                               | "size":820254,"updated":1742492682411000}}     |
    +--------------------------------+--------------------------------------+-----------------------------------------------+------------------------------------------------+
    | ...                            | ...                                  | ...           |                               | ...                                            |
    +--------------------------------+--------------------------------------+-----------------------------------------------+------------------------------------------------+

Generate product information by using a Gemini model

Use a Gemini model to generate the following data for the pet store products:

  • Add an image_description column to the products_mm table.
  • Populate the animal_type , search_keywords , and subcategory columns of the products_mm table.
  • Run a query that returns a description of each product brand and also a count of the number of products from that brand. The brand description is generated by analyzing product information for all of the products from that brand, including product images.
  1. In the query editor of the BigQuerypage, run the following query to create and populate the image_description column:

     CREATE 
      
     OR 
      
     REPLACE 
      
     TABLE 
      
     cymbal_pets 
     . 
     products_mm 
     AS 
     SELECT 
      
     product_id 
     , 
      
     product_name 
     , 
      
     brand 
     , 
      
     category 
     , 
      
     subcategory 
     , 
      
     animal_type 
     , 
      
     search_keywords 
     , 
      
     price 
     , 
      
     description 
     , 
      
     inventory_level 
     , 
      
     supplier_id 
     , 
      
     average_rating 
     , 
      
     image 
     , 
      
     image_description 
     FROM 
      
     AI 
     . 
     GENERATE_TABLE 
     ( 
      
     MODEL 
      
     `cymbal_pets.gemini` 
     , 
      
     ( 
      
     SELECT 
      
     ( 
     'Can you describe the following image?' 
     , 
      
     OBJ 
     . 
     GET_ACCESS_URL 
     ( 
     image 
     , 
      
     'r' 
     )) 
      
     AS 
      
     prompt 
     , 
      
     * 
      
     FROM 
      
     cymbal_pets 
     . 
     products_mm 
      
     ), 
      
     STRUCT 
     ( 
     'image_description STRING' 
      
     AS 
      
     output_schema 
     )); 
    
  2. In the query editor of the BigQuerypage, run the following query to update the animal_type , search_keywords , and subcategory columns with generated data:

     UPDATE 
      
     cymbal_pets 
     . 
     products_mm 
      
     p 
     SET 
      
     p 
     . 
     animal_type 
      
     = 
      
     s 
     . 
     animal_type 
     , 
      
     p 
     . 
     search_keywords 
      
     = 
      
     s 
     . 
     search_keywords 
     , 
      
     p 
     . 
     subcategory 
      
     = 
      
     s 
     . 
     subcategory 
     FROM 
      
     ( 
      
     SELECT 
      
     animal_type 
     , 
      
     search_keywords 
     , 
      
     subcategory 
     , 
      
     uri 
      
     FROM 
      
     AI 
     . 
     GENERATE_TABLE 
     ( 
      
     MODEL 
      
     `cymbal_pets.gemini` 
     , 
      
     ( 
      
     SELECT 
      
     ( 
      
     'For the image of a pet product, concisely generate the following metadata.' 
      
     '1) animal_type and 2) 5 SEO search keywords, and 3) product subcategory' 
     , 
      
     OBJ 
     . 
     GET_ACCESS_URL 
     ( 
     image 
     , 
      
     'r' 
     ), 
      
     description 
     ) 
      
     AS 
      
     prompt 
     , 
      
     image 
     . 
     uri 
      
     AS 
      
     uri 
     , 
      
     FROM 
      
     cymbal_pets 
     . 
     products_mm 
      
     ), 
      
     STRUCT 
     ( 
      
     'animal_type STRING, search_keywords ARRAY<STRING>, subcategory STRING' 
      
     AS 
      
     output_schema 
     , 
      
     100 
      
     AS 
      
     max_output_tokens 
     )) 
      
     ) 
      
     s 
     WHERE 
      
     p 
     . 
     image 
     . 
     uri 
      
     = 
      
     s 
     . 
     uri 
     ; 
    
  3. In the query editor of the BigQuerypage, run the following query to view the generated data:

     SELECT 
      
     product_name 
     , 
      
     image_description 
     , 
      
     animal_type 
     , 
      
     search_keywords 
     , 
      
     subcategory 
     , 
     FROM 
      
     cymbal_pets 
     . 
     products_mm 
     ; 
    

    The results look similar to the following:

    +--------------------------------+-------------------------------------+-------------+------------------------+------------------+
    | product_name                   | image.description                   | animal_type | search_keywords        | subcategory      |
    +--------------------------------+-------------------------------------+-------------+------------------------+------------------+
    |  AquaClear Aquarium Background | The image shows a colorful coral    | fish        | aquarium background    | aquarium decor   |
    |                                | reef backdrop. The background is a  |             | fish tank backdrop     |                  |
    |                                | blue ocean with a bright light...   |             | coral reef decor       |                  |
    |                                |                                     |             | underwater scenery     |                  |
    |                                |                                     |             | aquarium decoration    |                  |
    +--------------------------------+-------------------------------------+-------------+------------------------+------------------+
    |  AquaClear Aquarium            | The image shows a long, clear       | fish        | aquarium gravel vacuum | aquarium         |
    |  Gravel Vacuum                 | plastic tube with a green hose      |             | aquarium cleaning      | cleaning         |
    |                                | attached to one end. The tube...    |             | aquarium maintenance   |                  |
    |                                |                                     |             | fish tank cleaning     |                  |
    |                                |                                     |             | gravel siphon          |                  |
    +--------------------------------+-------------------------------------+-------------+------------------------+------------------+
    | ...                            | ...                                 | ...         |  ...                   | ...              |
    +--------------------------------+-------------------------------------+-------------+------------------------+------------------+
  4. In the query editor of the BigQuerypage, run the following query to generate a description of each product brand and also a count of the number of products from that brand:

     SELECT 
      
     brand 
     , 
      
     brand_description 
     , 
      
     cnt 
     FROM 
      
     AI 
     . 
     GENERATE_TABLE 
     ( 
      
     MODEL 
      
     `cymbal_pets.gemini` 
     , 
      
     ( 
      
     SELECT 
      
     brand 
     , 
      
     COUNT 
     ( 
     * 
     ) 
      
     AS 
      
     cnt 
     , 
      
     ( 
      
     'Use the images and text to give one concise brand description for a website brand page.' 
      
     'Return the description only.' 
     , 
      
     ARRAY_AGG 
     ( 
     OBJ 
     . 
     GET_ACCESS_URL 
     ( 
     image 
     , 
      
     'r' 
     )), 
      
     ARRAY_AGG 
     ( 
     description 
     ), 
      
     ARRAY_AGG 
     ( 
     category 
     ), 
      
     ARRAY_AGG 
     ( 
     subcategory 
     )) 
      
     AS 
      
     prompt 
      
     FROM 
      
     cymbal_pets 
     . 
     products_mm 
      
     GROUP 
      
     BY 
      
     brand 
      
     ), 
      
     STRUCT 
     ( 
     'brand_description STRING' 
      
     AS 
      
     output_schema 
     )) 
     ORDER 
      
     BY 
      
     cnt 
      
     DESC 
     ; 
    

    The results look similar to the following:

    +--------------+-------------------------------------+-----+
    | brand        | brand.description                   | cnt |
    +--------------+-------------------------------------+-----+
    |  AquaClear   | AquaClear is a brand of aquarium    | 33  |
    |              | and pond care products that offer   |     |
    |              | a wide range of solutions for...    |     |
    +--------------+-------------------------------------+-----+
    |  Ocean       | Ocean Bites is a brand of cat food  | 28  |
    |  Bites       | that offers a variety of recipes    |     |
    |              | and formulas to meet the specific.. |     |
    +--------------+-------------------------------------+-----+
    |  ...         | ...                                 |...  |
    +--------------+-------------------------------------+-----+

Create a Python UDF to transform product images

Create a Python UDF to convert product images to grayscale.

The Python UDF uses open source libraries , and also uses parallel execution to transform multiple images simultaneously.

  1. In the query editor of the BigQuerypage, run the following query to create the to_grayscale UDF:

     CREATE 
      
     OR 
      
     REPLACE 
      
     FUNCTION 
      
     cymbal_pets 
     . 
     to_grayscale 
     ( 
     src_json 
      
     STRING 
     , 
      
     dst_json 
      
     STRING 
     ) 
     RETURNS 
      
     STRING 
     LANGUAGE 
      
     python 
     WITH 
      
     CONNECTION 
      
     `us.cymbal_conn` 
     OPTIONS 
      
     ( 
     entry_point 
     = 
     'to_grayscale' 
     , 
      
     runtime_version 
     = 
     'python-3.11' 
     , 
      
     packages 
     =[ 
     'numpy' 
     , 
      
     'opencv-python' 
     ] 
     ) 
     AS 
      
     " 
     "" 
     import cv2 as cv 
     import numpy as np 
     from urllib.request import urlopen, Request 
     import json 
     # Transform the image to grayscale. 
     def to_grayscale(src_ref, dst_ref): 
     src_json = json.loads(src_ref) 
     srcUrl = src_json[" 
     access_urls 
     "][" 
     read_url 
     "] 
     dst_json = json.loads(dst_ref) 
     dstUrl = dst_json[" 
     access_urls 
     "][" 
     write_url 
     "] 
     req = urlopen(srcUrl) 
     arr = np.asarray(bytearray(req.read()), dtype=np.uint8) 
     img = cv.imdecode(arr, -1) # 'Load it as it is' 
     # Convert the image to grayscale 
     gray_image = cv.cvtColor(img, cv.COLOR_BGR2GRAY) 
     # Send POST request to the URL 
     _, img_encoded = cv.imencode('.png', gray_image) 
     req = Request(url=dstUrl, data=img_encoded.tobytes(), method='PUT', headers = { 
     " 
     Content 
     - 
     Type 
     ": " 
     image 
     / 
     png 
     ", 
     }) 
     with urlopen(req) as f: 
     pass 
     return dst_ref 
     "" 
     " 
     ; 
    

Transform product images

Create the products_grayscale table with an ObjectRef column that contains the destination paths and authorizers for grayscale images. The destination path is derived from the original image path.

After you create the table, run the to_grayscale function to create the grayscale images, write them to a Cloud Storage bucket, and then return ObjectRefRuntime values containing access URLs and metadata for the grayscale images.

  1. In the query editor of the BigQuerypage, run the following query to create the products_grayscale table:

     CREATE 
      
     OR 
      
     REPLACE 
      
     TABLE 
      
     cymbal_pets 
     . 
     products_grayscale 
     AS 
     SELECT 
      
     product_id 
     , 
      
     product_name 
     , 
      
     image 
     , 
      
     OBJ 
     . 
     MAKE_REF 
     ( 
      
     CONCAT 
     ( 
     'gs:// BUCKET 
    /cymbal-pets-images/grayscale/' 
     , 
      
     REGEXP_EXTRACT 
     ( 
     image 
     . 
     uri 
     , 
      
     r 
     '([^/]+)$' 
     )), 
      
     'us.cymbal_conn' 
     ) 
      
     AS 
      
     gray_image 
     FROM 
      
     cymbal_pets 
     . 
     products_mm 
     ; 
    

    Replace BUCKET with the name of the bucket that you created .

  2. In the query editor of the BigQuerypage, run the following query to create the grayscale images, write them to a Cloud Storage bucket, and then return ObjectRefRuntime values containing access URLs and metadata for the grayscale images:

     SELECT 
      
     cymbal_pets 
     . 
     to_grayscale 
     ( 
      
     TO_JSON_STRING 
     ( 
     OBJ 
     . 
     GET_ACCESS_URL 
     ( 
     image 
     , 
      
     'r' 
     )), 
      
     TO_JSON_STRING 
     ( 
     OBJ 
     . 
     GET_ACCESS_URL 
     ( 
     gray_image 
     , 
      
     'rw' 
     ))) 
     FROM 
      
     cymbal_pets 
     . 
     products_grayscale 
     ; 
    

    The results look similar to the following:

    +-----------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    | f0                                                                                                                                                                    |
    +-----------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    | {"access_urls":{"expiry_time":"2025-04-26T03:00:48Z",                                                                                                                 |
    | "read_url":"https://storage.googleapis.com/mybucket/cymbal-pets-images%2Fgrayscale%2Focean-bites-salmon-%26-tuna-cat-food.png?additional_read URL_information",       |
    | "write_url":"https://storage.googleapis.com/myproject/cymbal-pets-images%2Fgrayscale%2Focean-bites-salmon-%26-tuna-cat-food.png?additional_write URL_information"},   |
    | "objectref":{"authorizer":"myproject.region.myconnection","uri":"gs://myproject/cymbal-pets-images/grayscale/ocean-bites-salmon-&-tuna-cat-food.png"}}                |
    +-----------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    | {"access_urls":{"expiry_time":"2025-04-26T03:00:48Z",                                                                                                                 |
    | "read_url":"https://storage.googleapis.com/mybucket/cymbal-pets-images%2Fgrayscale%2Ffluffy-buns-guinea-pig-tunnel.png?additional _read URL_information",             |
    | "write_url":"https://storage.googleapis.com/myproject/cymbal-pets-images%2Fgrayscale%2Focean-bites-salmon-%26-tuna-cat-food.png?additional_write_URL_information"},   |
    | "objectref":{"authorizer":"myproject.region.myconnection","uri":"gs://myproject/cymbal-pets-images%2Fgrayscale%2Ffluffy-buns-guinea-pig-tunnel.png"}}                 |
    +-----------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    |  ...                                                                                                                                                                  |
    +-----------------------------------------------------------------------------------------------------------------------------------------------------------------------+

Create a Python UDF to chunk PDF data

Create a Python UDF to chunk the PDF objects that contain the Cymbal pets product manuals into multiple parts.

PDFs are often very large and might not fit into a single call to a generative AI model. By chunking the PDFs, you can store the PDF data in a model-ready format for easier analysis.

  1. In the query editor of the BigQuerypage, run the following query to create the chunk_pdf UDF:

     -- This function chunks the product manual PDF into multiple parts. 
     -- The function accepts an ObjectRefRuntime value for the PDF file and the chunk size. 
     -- It then parses the PDF, chunks the contents, and returns an array of chunked text. 
     CREATE 
      
     OR 
      
     REPLACE 
      
     FUNCTION 
      
     cymbal_pets 
     . 
     chunk_pdf 
     ( 
     src_json 
      
     STRING 
     , 
      
     chunk_size 
      
     INT64 
     , 
      
     overlap_size 
      
     INT64 
     ) 
     RETURNS 
      
     ARRAY<STRING 
     > 
     LANGUAGE 
      
     python 
     WITH 
      
     CONNECTION 
      
     `us.cymbal_conn` 
     OPTIONS 
      
     ( 
     entry_point 
     = 
     'chunk_pdf' 
     , 
      
     runtime_version 
     = 
     'python-3.11' 
     , 
      
     packages 
     =[ 
     'pypdf' 
     ] 
     ) 
     AS 
      
     " 
     "" 
     import io 
     import json 
     from pypdf import PdfReader  # type: ignore 
     from urllib.request import urlopen, Request 
     def chunk_pdf(src_ref: str, chunk_size: int, overlap_size: int) -> str: 
     src_json = json.loads(src_ref) 
     srcUrl = src_json[" 
     access_urls 
     "][" 
     read_url 
     "] 
     req = urlopen(srcUrl) 
     pdf_file = io.BytesIO(bytearray(req.read())) 
     reader = PdfReader(pdf_file, strict=False) 
     # extract and chunk text simultaneously 
     all_text_chunks = [] 
     curr_chunk = 
     "" 
     for page in reader.pages: 
     page_text = page.extract_text() 
     if page_text: 
     curr_chunk += page_text 
     # split the accumulated text into chunks of a specific size with overlaop 
     # this loop implements a sliding window approach to create chunks 
     while len(curr_chunk) >= chunk_size: 
     split_idx = curr_chunk.rfind(" 
      
     ", 0, chunk_size) 
     if split_idx == -1: 
     split_idx = chunk_size 
     actual_chunk = curr_chunk[:split_idx] 
     all_text_chunks.append(actual_chunk) 
     overlap = curr_chunk[split_idx + 1 : split_idx + 1 + overlap_size] 
     curr_chunk = overlap + curr_chunk[split_idx + 1 + overlap_size :] 
     if curr_chunk: 
     all_text_chunks.append(curr_chunk) 
     return all_text_chunks 
     "" 
     " 
     ; 
    

Analyze PDF data

Run the chunk_pdf function to chunk the PDF data in the product_manuals table, and then create a product_manual_chunk_strings table that contains one PDF chunk per row. Use a Gemini model on the product_manual_chunk_strings data to summarize the legal information found in the product manuals.

  1. In the query editor of the BigQuerypage, run the following query to create the product_manual_chunk_strings table:

     CREATE 
      
     OR 
      
     REPLACE 
      
     TABLE 
      
     cymbal_pets 
     . 
     product_manual_chunk_strings 
     AS 
     SELECT 
      
     chunked 
     FROM 
      
     cymbal_pets 
     . 
     product_manuals 
     , 
     UNNEST 
      
     ( 
     cymbal_pets 
     . 
     chunk_pdf 
     ( 
      
     TO_JSON_STRING 
     ( 
      
     OBJ 
     . 
     GET_ACCESS_URL 
     ( 
     OBJ 
     . 
     MAKE_REF 
     ( 
     uri 
     , 
      
     'us.cymbal_conn' 
     ), 
      
     'r' 
     )), 
      
     1000 
     , 
      
     100 
     )) 
      
     as 
      
     chunked 
     ; 
    
  2. In the query editor of the BigQuerypage, run the following query to analyze the PDF data by using a Gemini model:

     SELECT 
      
     ml_generate_text_llm_result 
     FROM 
      
     ML 
     . 
     GENERATE_TEXT 
     ( 
      
     MODEL 
      
     `cymbal_pets.gemini` 
     , 
      
     ( 
      
     SELECT 
      
     ( 
      
     'Can you summarize the product manual as bullet points? Highlight the legal clauses' 
     , 
      
     chunked 
     ) 
      
     AS 
      
     prompt 
     , 
      
     FROM 
      
     cymbal_pets 
     . 
     product_manual_chunk_strings 
      
     ), 
      
     STRUCT 
     ( 
      
     TRUE 
      
     AS 
      
     FLATTEN_JSON_OUTPUT 
     )); 
    

    The results look similar to the following:

    +-------------------------------------------------------------------------------------------------------------------------------------------+
    | ml_generate_text_llm_result                                                                                                               |
    +-------------------------------------------------------------------------------------------------------------------------------------------+
    | ## CritterCuisine Pro 5000 Automatic Pet Feeder Manual Summary:                                                                           |
    |                                                                                                                                           |
    | **Safety:**                                                                                                                               |
    |                                                                                                                                           |
    | * **Stability:** Place feeder on a level, stable surface to prevent tipping.                                                              |
    | * **Power Supply:** Only use the included AC adapter. Using an incompatible adapter can damage the unit and void the warranty.            |
    | * **Cord Safety:** Keep the power cord out of reach of pets to prevent chewing or entanglement.                                           |
    | * **Children:** Supervise children around the feeder. This is not a toy.                                                                  |
    | * **Pet Health:** Consult your veterinarian before using an automatic feeder if your pet has special dietary needs, health conditions, or |
    +-------------------------------------------------------------------------------------------------------------------------------------------+
    | ## Product Manual Summary:                                                                                                                |
    |                                                                                                                                           |
    | **6.3 Manual Feeding:**                                                                                                                   |
    |                                                                                                                                           |
    | * Press MANUAL button to dispense a single portion (Meal 1 size). **(Meal Enabled)**                                                      |
    |                                                                                                                                           |
    | **6.4 Recording a Voice Message:**                                                                                                        |
    |                                                                                                                                           |
    | * Press and hold VOICE button.                                                                                                            |
    | * Speak clearly into the microphone (up to 10 seconds).                                                                                   |
    | * Release VOICE button to finish recording.                                                                                               |
    | * Briefly press VOICE button to play back the recording.                                                                                  |
    | * To disable the voice message, record a blank message (hold VOICE button for 10 seconds without speaking). **(Meal Enabled)**            |
    |                                                                                                                                           |
    | **6.5 Low Food Level Indicator:**                                                                                                         |
    +-------------------------------------------------------------------------------------------------------------------------------------------+
    | ...                                                                                                                                       |
    +-------------------------------------------------------------------------------------------------------------------------------------------+

Generate embeddings from image data, and then use the embeddings to return similar images by using vector search .

In a production scenario, we recommend creating a vector index before running a vector search. A vector index lets you perform the vector search more quickly, with the trade-off of reducing recall and so returning more approximate results.

  1. In the query editor of the BigQuerypage, run the following query to create the products_embeddings table:

     CREATE 
      
     OR 
      
     REPLACE 
      
     TABLE 
      
     cymbal_pets 
     . 
     products_embedding 
     AS 
     SELECT 
      
     product_id 
     , 
      
     ml_generate_embedding_result 
      
     as 
      
     embedding 
     , 
      
     content 
      
     as 
      
     image 
     FROM 
      
     ML 
     . 
     GENERATE_EMBEDDING 
     ( 
     MODEL 
      
     `cymbal_pets.embedding_model` 
     , 
      
     ( 
      
     SELECT 
      
     OBJ 
     . 
     GET_ACCESS_URL 
     ( 
     image 
     , 
      
     'r' 
     ) 
      
     as 
      
     content 
     , 
      
     image 
     , 
      
     product_id 
      
     FROM 
      
     cymbal_pets 
     . 
     products_mm 
      
     ), 
      
     STRUCT 
      
     () 
     ); 
    
  2. In the query editor of the BigQuerypage, run the following query to run a vector search to return product images that are similar to the given input image:

     SELECT 
      
     * 
     FROM 
     VECTOR_SEARCH 
     ( 
      
     TABLE 
      
     cymbal_pets 
     . 
     products_embedding 
     , 
      
     'embedding' 
     , 
      
     ( 
     SELECT 
      
     ml_generate_embedding_result 
      
     as 
      
     embedding 
      
     FROM 
      
     ML 
     . 
     GENERATE_EMBEDDING 
     ( 
      
     MODEL 
      
     `cymbal_pets.embedding_model` 
     , 
      
     ( 
     SELECT 
      
     OBJ 
     . 
     FETCH_METADATA 
     ( 
     OBJ 
     . 
     MAKE_REF 
     ( 
     'gs://cloud-samples-data/bigquery/tutorials/cymbal-pets/images/cozy-naps-cat-scratching-post-with-condo.png' 
     , 
      
     'us.cymbal_conn' 
     )) 
      
     as 
      
     content 
     ) 
      
     )) 
     ); 
    

    The results look similar to the following:

    +-----------------+-----------------+----------------+----------------------------------------------+--------------------+-------------------------------+------------------------------------------------+----------------+
    | query.embedding | base.product_id | base.embedding | base.image.uri                               | base.image.version | base.image.authorizer         | base.image.details                             | distance       |
    +-----------------+-----------------+----------------+----------------------------------------------+--------------------+-------------------------------+------------------------------------------------+----------------+
    | -0.0112330541   | 181             | -0.0112330541  | gs://cloud-samples-data/bigquery/            | 12345678910        | myproject.region.myconnection | {"gcs_metadata":{"content_type":               | 0.0            |
    | 0.0142525584    |                 |  0.0142525584  | tutorials/cymbal-pets/images/                |                    |                               | "image/png","md5_hash":"21234567hst16555w60j", |                |
    | 0.0135886827    |                 |  0.0135886827  | cozy-naps-cat-scratching-post-with-condo.png |                    |                               | "size":828318,"updated":1742492688982000}}     |                |
    | 0.0149955815    |                 |  0.0149955815  |                                              |                    |                               |                                                |                |
    | ...             |                 |  ...           |                                              |                    |                               |                                                |                |
    |                 |                 |                |                                              |                    |                               |                                                |                |
    |                 |                 |                |                                              |                    |                               |                                                |                |
    +-----------------+-----------------+----------------+----------------------------------------------+--------------------+-------------------------------+------------------------------------------------+----------------+
    | -0.0112330541   | 187             | -0.0190353896  | gs://cloud-samples-data/bigquery/            | 23456789101        | myproject.region.myconnection | {"gcs_metadata":{"content_type":               | 0.4216330832.. |
    | 0.0142525584    |                 |  0.0116206668  | tutorials/cymbal-pets/images/                |                    |                               | "image/png","md5_hash":"7328728fhakd9937djo4", |                |
    | 0.0135886827    |                 |  0.0136198215  | cozy-naps-cat-scratching-post-with-bed.png   |                    |                               | "size":860113,"updated":1742492688774000}}     |                |
    | 0.0149955815    |                 |  0.0173457414  |                                              |                    |                               |                                                |                |
    | ...             |                 |  ...           |                                              |                    |                               |                                                |                |
    |                 |                 |                |                                              |                    |                               |                                                |                |
    |                 |                 |                |                                              |                    |                               |                                                |                |
    +---------C--------+-----------------+----------------+----------------------------------------------+--------------------+-------------------------------+------------------------------------------------+----------------+
    | ...             | ...             | ...            | ...                                          | ...                | ...                           | ...                                            | ...            |
    +-----------------+-----------------+----------------+----------------------------------------------+--------------------+-------------------------------+------------------------------------------------+----------------+

Process ordered multimodal data using arrays of ObjectRef values

This section shows you how to complete the following tasks:

  1. Recreate the product_manuals table so that it contains both a PDF file for the Crittercuisine 5000 product manual, and PDF files for each page of that manual.
  2. Create a table that maps the manual to its chunks. The ObjectRef value that represents the complete manual is stored in a STRUCT<uri STRING, version STRING, authorizer STRING, details JSON>> column. The ObjectRef values that represent the manual pages are stored in an ARRAY<STRUCT<uri STRING, version STRING, authorizer STRING, details JSON>> column.
  3. Analyze an array of ObjectRef values together to return a single generated value.
  4. Analyze an array of ObjectRef values separately and returning a generated value for each array value.

As part of the analysis tasks, you convert the array of ObjectRef values to an ordered list of ObjectRefRuntime values, and then pass that list to a Gemini model, specifying the ObjectRefRuntime values as part of the prompt. The ObjectRefRuntime values provide signed URLs that the model uses to access the object information in Cloud Storage.

Follow these steps to process ordered multimodal data using arrays of ObjectRef values:

  1. Go to the BigQuerypage.

    Go to BigQuery

  2. In the query editor, run the following query to recreate the product_manuals table:

     CREATE 
      
     OR 
      
     REPLACE 
      
     EXTERNAL 
      
     TABLE 
      
     `cymbal_pets.product_manuals` 
      
     WITH 
      
     CONNECTION 
      
     `us.cymbal_conn` 
      
     OPTIONS 
      
     ( 
      
     object_metadata 
      
     = 
      
     'SIMPLE' 
     , 
      
     uris 
      
     = 
      
     [ 
      
     'gs://cloud-samples-data/bigquery/tutorials/cymbal-pets/documents/*.pdf' 
     , 
      
     'gs://cloud-samples-data/bigquery/tutorials/cymbal-pets/document_chunks/*.pdf' 
     ] 
     ); 
    
  3. In the query editor, run the following query to write PDF data to the map_manual_to_chunks table:

     -- Extract the file and chunks into a single table. 
     -- Store the chunks in the chunks column as array of ObjectRefs (ordered by page number) 
     CREATE 
      
     OR 
      
     REPLACE 
      
     TABLE 
      
     cymbal_pets 
     . 
     map_manual_to_chunks 
     AS 
     SELECT 
      
     ARRAY_AGG 
     ( 
     m1 
     . 
     ref 
     ) 
     [ 
     0 
     ] 
      
     manual 
     , 
      
     ARRAY_AGG 
     ( 
     m2 
     . 
     ref 
      
     ORDER 
      
     BY 
      
     m2 
     . 
     ref 
     . 
     uri 
     ) 
      
     chunks 
     FROM 
      
     cymbal_pets 
     . 
     product_manuals 
      
     m1 
     JOIN 
      
     cymbal_pets 
     . 
     product_manuals 
      
     m2 
      
     ON 
      
     REGEXP_EXTRACT 
     ( 
     m1 
     . 
     uri 
     , 
      
     r 
     '.*/([^.]*).[^/]+' 
     ) 
      
     = 
      
     REGEXP_EXTRACT 
     ( 
     m2 
     . 
     uri 
     , 
      
     r 
     '.*/([^.]*)_page[0-9]+.[^/]+' 
     ) 
     GROUP 
      
     BY 
      
     m1 
     . 
     uri 
     ; 
    
  4. In the query editor, run the following query to view the PDF data in the map_manual_to_chunks table:

     SELECT 
      
     * 
     FROM 
      
     cymbal_pets 
     . 
     map_manual_to_chunks 
     ; 
    

    The results look similar to the following:

    +-------------------------------------+--------------------------------+-----------------------------------+------------------------------------------------------+-------------------------------------------+---------------------------------+------------------------------------+-------------------------------------------------------+
    | manual.uri                          | manual.version                 | manual.authorizer                 | manual.details                                       | chunks.uri                                | chunks.version                  | chunks.authorizer                  | chunks.details                                        |
    +-------------------------------------+--------------------------------+-----------------------------------+------------------------------------------------------+-------------------------------------------+---------------------------------+------------------------------------+-------------------------------------------------------+
    | gs://cloud-samples-data/bigquery/   | 1742492785900455               | myproject.region.myconnection     | {"gcs_metadata":{"content_type":"application/pef",   | gs://cloud-samples-data/bigquery/         | 1745875761227129                | myproject.region.myconnection      | {"gcs_metadata":{"content_type":"application/pdf",    |
    | tutorials/cymbal-pets/documents/    |                                |                                   | "md5_hash":"c9032b037693d15a33210d638c763d0e",       | tutorials/cymbal-pets/documents/          |                                 |                                    | "md5_hash":"5a1116cce4978ec1b094d8e8b49a1d7c",        |
    | crittercuisine_5000_user_manual.pdf |                                |                                   | "size":566105,"updated":1742492785941000}}           | crittercuisine_5000_user_manual_page1.pdf |                                 |                                    | "size":504583,"updated":1745875761266000}}            |
    |                                     |                                |                                   |                                                      +-------------------------------------------+---------------------------------+------------------------------------+-------------------------------------------------------+
    |                                     |                                |                                   |                                                      | crittercuisine_5000_user_manual_page1.pdf | 1745875760613874                | myproject.region.myconnection      | {"gcs_metadata":{"content_type":"application/pdf",    |
    |                                     |                                |                                   |                                                      | tutorials/cymbal-pets/documents/          |                                 |                                    | "md5_hash":"94d03ec65d28b173bc87eac7e587b325",        |
    |                                     |                                |                                   |                                                      | crittercuisine_5000_user_manual_page2.pdf |                                 |                                    | "size":94622,"updated":1745875760649000}}             |
    |                                     |                                |                                   |                                                      +-------------------------------------------+---------------------------------+------------------------------------+-------------------------------------------------------+
    |                                     |                                |                                   |                                                      | ...                                       | ...                             |  ...                               | ...                                                   |
    +-------------------------------------+--------------------------------+-----------------------------------+------------------------------------------------------+-------------------------------------------+---------------------------------+------------------------------------+-------------------------------------------------------+
  5. In the query editor, run the following query to generate a single response from a Gemini model based on the analysis of an array of ObjectRef values:

     WITH 
      
     manuals 
      
     AS 
      
     ( 
      
     SELECT 
      
     OBJ 
     . 
     GET_ACCESS_URL 
     ( 
     manual 
     , 
      
     'r' 
     ) 
      
     AS 
      
     manual 
     , 
      
     ARRAY 
     ( 
      
     SELECT 
      
     OBJ 
     . 
     GET_ACCESS_URL 
     ( 
     chunk 
     , 
      
     'r' 
     ) 
      
     AS 
      
     chunk 
      
     FROM 
      
     UNNEST 
     ( 
     m1 
     . 
     chunks 
     ) 
      
     AS 
      
     chunk 
      
     WITH 
      
     OFFSET 
      
     AS 
      
     idx 
      
     ORDER 
      
     BY 
      
     idx 
      
     ) 
      
     AS 
      
     chunks 
      
     FROM 
      
     cymbal_pets 
     . 
     map_manual_to_chunks 
      
     AS 
      
     m1 
      
     ) 
     SELECT 
      
     ml_generate_text_llm_result 
      
     AS 
      
     Response 
     FROM 
      
     ML 
     . 
     GENERATE_TEXT 
     ( 
      
     MODEL 
      
     `cymbal_pets.gemini` 
     , 
      
     ( 
      
     SELECT 
      
     ( 
      
     'Can you provide a page by page summary for the first 3 pages of the attached manual? Only write one line for each page. The pages are provided in serial order' 
     , 
      
     manuals 
     . 
     chunks 
     ) 
      
     AS 
      
     prompt 
     , 
      
     FROM 
      
     manuals 
      
     ), 
      
     STRUCT 
     ( 
     TRUE 
      
     AS 
      
     FLATTEN_JSON_OUTPUT 
     )); 
    

    The results look similar to the following:

    +-------------------------------------------+
    | Response                                  |
    +-------------------------------------------+
    | Page 1: This manual is for the            |
    | CritterCuisine Pro 5000 automatic         |
    | pet feeder.                               |
    | Page 2: The manual covers safety          |
    | precautions, what's included,             |
    | and product overview.                     |
    | Page 3: The manual covers assembly,       |
    | initial setup, and programming the clock. |
    +-------------------------------------------+
  6. In the query editor, run the following query to generate multiple responses from a Gemini model based on the analysis of an array of ObjectRef values:

     WITH 
      
     input_chunked_objrefs 
      
     AS 
      
     ( 
      
     SELECT 
      
     row_id 
     , 
      
     offset 
     , 
      
     chunk_ref 
      
     FROM 
      
     ( 
      
     SELECT 
      
     ROW_NUMBER 
     () 
      
     OVER 
      
     () 
      
     AS 
      
     row_id 
     , 
      
     * 
      
     FROM 
      
     `cymbal_pets.map_manual_to_chunks` 
      
     ) 
      
     AS 
      
     indexed_table 
      
     LEFT 
      
     JOIN 
      
     UNNEST 
     ( 
     indexed_table 
     . 
     chunks 
     ) 
      
     AS 
      
     chunk_ref 
      
     WITH 
      
     OFFSET 
      
     ), 
      
     get_access_urls 
      
     AS 
      
     ( 
      
     SELECT 
      
     row_id 
     , 
      
     offset 
     , 
      
     chunk_ref 
     , 
      
     OBJ 
     . 
     GET_ACCESS_URL 
     ( 
     chunk_ref 
     , 
      
     'r' 
     ) 
      
     AS 
      
     ObjectRefRuntime 
      
     FROM 
      
     input_chunked_objrefs 
      
     ), 
      
     valid_get_access_urls 
      
     AS 
      
     ( 
      
     SELECT 
      
     * 
      
     FROM 
      
     get_access_urls 
      
     WHERE 
      
     ObjectRefRuntime 
     [ 
     'runtime_errors' 
     ] 
      
     IS 
      
     NULL 
      
     ), 
      
     ordered_output_objrefruntime_array 
      
     AS 
      
     ( 
      
     SELECT 
      
     ARRAY_AGG 
     ( 
     ObjectRefRuntime 
      
     ORDER 
      
     BY 
      
     offset 
     ) 
      
     AS 
      
     ObjectRefRuntimeArray 
      
     FROM 
      
     valid_get_access_urls 
      
     GROUP 
      
     BY 
      
     row_id 
      
     ) 
     SELECT 
      
     page1_summary 
     , 
      
     page2_summary 
     , 
      
     page3_summary 
     FROM 
      
     AI 
     . 
     GENERATE_TABLE 
     ( 
      
     MODEL 
      
     `cymbal_pets.gemini` 
     , 
      
     ( 
      
     SELECT 
      
     ( 
      
     'Can you provide a page by page summary for the first 3 pages of the attached manual? Only write one line for each page. The pages are provided in serial order' 
     , 
      
     ObjectRefRuntimeArray 
     ) 
      
     AS 
      
     prompt 
     , 
      
     FROM 
      
     ordered_output_objrefruntime_array 
      
     ), 
      
     STRUCT 
     ( 
      
     'page1_summary STRING, page2_summary STRING, page3_summary STRING' 
      
     AS 
      
     output_schema 
     )); 
    

    The results look similar to the following:

    +-----------------------------------------------+-------------------------------------------+----------------------------------------------------+
    | page1_summary                                 | page2_summary                             | page3_summary                                      |
    +-----------------------------------------------+-------------------------------------------+----------------------------------------------------+
    | This manual provides an overview of the       | This section explains how to program      | This page covers connecting the feeder to Wi-Fi    |
    | CritterCuisine Pro 5000 automatic pet feeder, | the feeder's clock, set feeding           | using the CritterCuisine Connect app,  remote      |
    | including its features, safety precautions,   | schedules, copy and delete meal settings, | feeding, managing feeding schedules, viewing       |
    | assembly instructions, and initial setup.     | manually feed your pet, record            | feeding logs, receiving low food alerts,           |
    |                                               | a voice message, and understand           | updating firmware, creating multiple pet profiles, |
    |                                               | the low food level indicator.             | sharing access with other users, and cleaning      |
    |                                               |                                           | and maintaining the feeder.                        |
    +-----------------------------------------------+-------------------------------------------+----------------------------------------------------+

Clean up

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete .
  3. In the dialog, type the project ID, and then click Shut down to delete the project.
Create a Mobile Website
View Site in Mobile | Classic
Share by: