Preview
This product is subject to the "Pre-GA Offerings Terms" in the General Service Terms section of the Service Specific Terms . Pre-GA products are available "as is" and might have limited support. For more information, see the launch stage descriptions .
This page lists parameters for different functions provided by
the google_ml_integration
extension
to register and manage model endpoints.
The page also lists the secrets that you can manage by using model endpoint
management.
To use AI models in
production environments, see Build generative AI applications using
Cloud SQL
.
Models
Use this reference to understand parameters for functions that let you manage model endpoints.
google_ml.create_model()
The following shows how to call the google_ml.create_model()
SQL function used
to register model endpoint metadata:
CALL
google_ml
.
create_model
(
model_id
=
>
' MODEL_ID
'
,
model_request_url
=
>
' REQUEST_URL
'
,
model_provider
=
>
' PROVIDER_ID
'
,
model_type
=
>
' MODEL_TYPE
'
,
model_qualified_name
=
>
' MODEL_QUALIFIED_NAME
'
,
model_auth_type
=
>
' AUTH_TYPE
'
,
model_auth_id
=
>
' AUTH_ID
'
,
generate_headers_fn
=
>
' GENERATE_HEADER_FUNCTION
'
,
model_in_transform_fn
=
>
' INPUT_TRANSFORM_FUNCTION
'
,
model_out_transform_fn
=
>
' OUTPUT_TRANSFORM_FUNCTION
'
);
Parameter | Required | Description |
---|---|---|
MODEL_ID
|
required for all model endpoints | A unique ID for the model endpoint that you define. |
REQUEST_URL
|
optional for text embedding model endpoints with built-in support |
The model-specific endpoint when adding other text embedding and generic model endpoints. The request URL that the function generates for built-in model endpoints refers to your cluster's project and region or location. If you want to refer to another project, then ensure that you specify the For custom hosted model endpoints, ensure that the model endpoint is accessible through the internet. |
PROVIDER_ID
|
required for text embedding model endpoints with built-in support | The provider of the model endpoint. The default value is custom
. For Cloud SQL, set the provider to google
for Vertex AI model endpoints, open_ai
for OpenAI model endpoints, anthropic
for Anthropic model endpoints, hugging_face
for Hugging Face model endpoints, or custom
for custom-hosted model endpoints. |
MODEL_TYPE
|
optional for generic model endpoints | The model type. You can set this value to text_embedding
for text embedding model endpoints or generic
for all other model endpoints. |
MODEL_QUALIFIED_NAME
|
required for OpenAI model endpoints; optional for other model endpoints | The fully qualified name in case the model endpoint has multiple versions or if the model endpoint defines it—for example, textembedding-gecko@001
or textembedding-gecko@002
. Since the textembedding-gecko@001
model is pre-registered with model endpoint management, you can generate embeddings using textembedding-gecko@001
as the model ID. |
AUTH_TYPE
|
optional unless model endpoint has specific authentication requirement | The authentication type used by the model endpoint. You can set it to either cloudsql_service_agent_iam
for Vertex AI models or secret_manager
for other providers. |
AUTH_ID
|
don't set for Vertex AI model endpoints; required for all other model endpoints that store secrets in Secret Manager | The secret ID that you set and is subsequently used when registering a model endpoint. |
GENERATE_HEADER_FUNCTION
|
optional | The function name you set to generate custom headers. The signature of this function depends on the google_ml.predict_row()
function. See HTTP Header generation function
. |
INPUT_TRANSFORM_FUNCTION
|
optional for text embedding model endpoints with built-in support;don't set for generic model endpoints | The function to transform input of the corresponding prediction function to the model-specific input. See Transform functions . |
OUTPUT_TRANSFORM_FUNCTION
|
optional for text embedding model endpoints with built-in support;don't set for generic model endpoints | The function to transform model specific output to the prediction function output. See Transform functions . |
google_ml.alter_model()
The following shows how to call the google_ml.alter_model()
SQL function used
to update model endpoint metadata:
CALL
google_ml
.
alter_model
(
model_id
=
>
' MODEL_ID
'
,
model_request_url
=
>
' REQUEST_URL
'
,
model_provider
=
>
' PROVIDER_ID
'
,
model_type
=
>
' MODEL_TYPE
'
,
model_qualified_name
=
>
' MODEL_QUALIFIED_NAME
'
,
model_auth_type
=
>
' AUTH_TYPE
'
,
model_auth_id
=
>
' AUTH_ID
'
,
generate_headers_fn
=
>
' GENERATE_HEADER_FUNCTION
'
,
model_in_transform_fn
=
>
' INPUT_TRANSFORM_FUNCTION
'
,
model_out_transform_fn
=
>
' OUTPUT_TRANSFORM_FUNCTION
'
);
google_ml.drop_model()
The following shows how to call the google_ml.drop_model()
SQL function used
to drop a model endpoint:
CALL
google_ml
.
drop_model
(
' MODEL_ID
'
);
Parameter | Description |
---|---|
MODEL_ID
|
A unique ID for the model endpoint that you define. |
google_ml.list_model()
The following shows how to call the google_ml.list_model()
SQL function used
to list model endpoint information:
SELECT
google_ml
.
list_model
(
' MODEL_ID
'
);
Parameter | Description |
---|---|
MODEL_ID
|
A unique ID for the model endpoint that you define. |
google_ml.model_info_view
The following shows how to call the google_ml.model_info_view
view that is
used to list model endpoint information for all model endpoints:
SELECT
*
FROM
google_ml
.
model_info_view
;
Secrets
Use this reference to understand parameters for functions that let you manage secrets.
google_ml.create_sm_secret()
The following shows how to call the google_ml.create_sm_secret()
SQL function
used to add the secret created in Secret Manager:
CALL
google_ml
.
create_sm_secret
(
secret_id
=
>
' SECRET_ID
'
,
secret_path
=
>
'projects/ PROJECT_ID
/secrets/ SECRET_MANAGER_SECRET_ID
/versions/ VERSION_NUMBER
'
);
Parameter | Description |
---|---|
SECRET_ID
|
The secret ID that you set and is subsequently used when registering a model endpoint. |
PROJECT_ID
|
The ID of your Google Cloud project that contains the secret. This project can be different from the project that contains your Cloud SQL instance. |
SECRET_MANAGER_SECRET_ID
|
The secret ID set in Secret Manager when you created the secret. |
VERSION_NUMBER
|
The version number of the secret ID. |
google_ml.alter_sm_secret()
The following shows how to call the google_ml.alter_sm_secret()
SQL function
used to update secret information:
CALL
google_ml
.
alter_sm_secret
(
secret_id
=
>
' SECRET_ID
'
,
secret_path
=
>
'projects/ PROJECT_ID
/secrets/ SECRET_MANAGER_SECRET_ID
/versions/ VERSION_NUMBER
'
);
Parameter | Description |
---|---|
SECRET_ID
|
The secret ID that you set and is subsequently used when registering a model endpoint. |
PROJECT_ID
|
The ID of your Google Cloud project that contains the secret. This project can be different from the project that contains your Cloud SQL instance. |
SECRET_MANAGER_SECRET_ID
|
The secret ID set in Secret Manager when you created the secret. |
VERSION_NUMBER
|
The version number of the secret ID. |
google_ml.drop_sm_secret()
The following shows how to call the google_ml.drop_sm_secret()
SQL function
used to drop a secret:
CALL
google_ml
.
drop_sm_secret
(
' SECRET_ID
'
);
Parameter | Description |
---|---|
SECRET_ID
|
The secret ID that you set and is subsequently used when registering a model endpoint. |
Prediction functions
Use this reference to understand parameters for functions that let you generate embeddings or invoke predictions.
google_ml.embedding()
The following shows how to generate embeddings:
SELECT
google_ml
.
embedding
(
model_id
=
>
' MODEL_ID
'
,
contents
=
>
' CONTENT
'
);
Parameter | Description |
---|---|
MODEL_ID
|
A unique ID for the model endpoint that you define. |
CONTENT
|
the text to translate into a vector embedding. |
For examples of SQL queries to generate text embeddings, see Examples .
google_ml.predict_row()
The following shows how to invoke predictions:
SELECT
google_ml
.
predict_row
(
model_id
=
>
' MODEL_ID
'
,
request_body
=
>
' REQUEST_BODY
'
);
Parameter | Description |
---|---|
MODEL_ID
|
A unique ID for the model endpoint that you define. |
REQUEST_BODY
|
the parameters to the prediction function, in JSON format. |
For examples of SQL queries to invoke predictions, see Examples .
Transform functions
Use this reference to understand parameters for input and output transform functions.
Input transform function
The following shows the signature for the prediction function for text embedding model endpoints:
CREATE
OR
REPLACE
FUNCTION
INPUT_TRANSFORM_FUNCTION
(
model_id
VARCHAR
(
100
),
input_text
TEXT
)
RETURNS
JSON
;
Parameter | Description |
---|---|
INPUT_TRANSFORM_FUNCTION
|
The function to transform input of the corresponding prediction function to the model endpoint-specific input. |
Output transform function
The following shows the signature for the prediction function for text embedding model endpoints:
CREATE
OR
REPLACE
FUNCTION
OUTPUT_TRANSFORM_FUNCTION
(
model_id
VARCHAR
(
100
),
response_json
JSON
)
RETURNS
real
[];
Parameter | Description |
---|---|
OUTPUT_TRANSFORM_FUNCTION
|
The function to transform model endpoint-specific output to the prediction function output. |
Transform functions example
To better understand how to create transform functions for your model endpoint, consider a custom-hosted text embedding model endpoint that requires JSON input and output.
The following example curl request creates embeddings based on the prompt and the model endpoint:
curl
-m
100
-X
POST
https://cymbal.com/models/text/embeddings/v1
\
-H
"Content-Type: application/json"
-d
'{"prompt": ["Cloud SQL Embeddings"]}'
The following example response is returned:
[[
0.3522231
-0.35932037
0.10156056
0.17734447
-0.11606089
-0.17266059
0.02509351
0.20305622
-0.09787305
-0.12154685
-0.17313677
-0.08075467
0.06821183
-0.06896557
0.1171584
-0.00931572
0.11875633
-0.00077482
0.25604948
0.0519384
0.2034983
-0.09952664
0.10347155
-0.11935943
-0.17872004
-0.08706985
-0.07056875
-0.05929353
0.4177883
-0.14381726
0.07934926
0.31368294
0.12543282
0.10758053
-0.30210832
-0.02951015
0.3908268
-0.03091059
0.05302926
-0.00114946
-0.16233777
0.1117468
-0.1315904
0.13947351
-0.29569918
-0.12330773
-0.04354299
-0.18068913
0.14445548
0.19481727
]]
Based on this input and response, you can infer the following:
-
The model expects JSON input through the
prompt
field. This field accepts an array of inputs. As thegoogle_ml.embedding()
function is a row level function, it expects one text input at a time. Thus, you need to create an input transform function that builds an array with a single element. -
The response from the model is an array of embeddings, one for each prompt input to the model. As the
google_ml.embedding()
function is a row level function, it returns a single input at a time. Thus, you need to create an output transform function that can be used to extract the embedding from the array.
The following example shows the input and output transform functions that is used for this model endpoint when it is registered with model endpoint management:
input transform function
CREATE
OR
REPLACE
FUNCTION
cymbal_text_input_transform
(
model_id
VARCHAR
(
100
),
input_text
TEXT
)
RETURNS
JSON
LANGUAGE
plpgsql
AS
$$
DECLARE
transformed_input
JSON
;
model_qualified_name
TEXT
;
BEGIN
SELECT
json_build_object
(
'prompt'
,
json_build_array
(
input_text
))::
JSON
INTO
transformed_input
;
RETURN
transformed_input
;
END
;
$$
;
output transform function
CREATE
OR
REPLACE
FUNCTION
cymbal_text_output_transform
(
model_id
VARCHAR
(
100
),
response_json
JSON
)
RETURNS
REAL
[]
LANGUAGE
plpgsql
AS
$$
DECLARE
transformed_output
REAL
[];
BEGIN
SELECT
ARRAY
(
SELECT
json_array_elements_text
(
response_json
-
> 0
))
INTO
transformed_output
;
RETURN
transformed_output
;
END
;
$$
;
HTTP header generation function
The following shows signature for the header generation function that can be
used with the google_ml.embedding()
prediction function when registering other text embedding model endpoints.
CREATE
OR
REPLACE
FUNCTION
GENERATE_HEADERS
(
model_id
VARCHAR
(
100
),
input_text
TEXT
)
RETURNS
JSON
;
For the google_ml.predict_row()
prediction function, the signature is as
follows:
CREATE
OR
REPLACE
FUNCTION
GENERATE_HEADERS
(
model_id
TEXT
,
input
JSON
)
RETURNS
JSON
;
Parameter | Description |
---|---|
GENERATE_HEADERS
|
The function to generate custom headers. You can also pass the authorization header generated by the header generation function while registering the model endpoint. |
Header generation function example
To better understand how to create a function that generates output in JSON key value pairs that are used as HTTP headers, consider a custom-hosted text embedding model endpoint.
The following example curl request passes the version
HTTP header, which is
used by the model endpoint:
curl
-m
100
-X
POST
https://cymbal.com/models/text/embeddings/v1
\
-H
"Content-Type: application/json"
\
-H
"version: 2024-01-01"
\
-d
'{"prompt": ["Cloud SQL Embeddings"]}'
The model expects text input through the version
field and returns the version
value in JSON format. The following example shows the header generation function
that is used for this text embedding model endpoint when it is registered with model
endpoint management:
sql
CREATE OR REPLACE FUNCTION header_gen_fn(model_id VARCHAR(100), input_text TEXT)
RETURNS JSON
LANGUAGE plpgsql
AS $$
BEGIN
RETURN json_build_object('version', '2024-01-01')::JSON;
END;
$$;
Request URL generation
Use the request URL generation function to infer the request URLs for the model endpoints with built-in support. The following shows the signature for this function:
CREATE
OR
REPLACE
FUNCTION
GENERATE_REQUEST_URL
(
provider
google_ml
.
model_provider
,
model_type
google_ml
.
MODEL_TYPE
,
model_qualified_name
VARCHAR
(
100
),
model_region
VARCHAR
(
100
)
DEFAULT
NULL
)
Parameter | Description |
---|---|
GENERATE_REQUEST_URL
|
The function to generate request URL generated by the extension for model endpoints with built-in support. |