This page provides detailed information about all available vector assist functions, and their required and optional parameters.
vector_assist.define_spec
Defines a new vector specification, or vector spec , and returns recommendations necessary to step up the vector workload. This function applies user-provided specifications to generate the recommendations.
Function
CREATE
OR
REPLACE
FUNCTION
vector_assist
.
define_spec
(
spec_id
TEXT
DEFAULT
NULL
,
table_name
TEXT
,
schema_name
TEXT
DEFAULT
NULL
,
vector_column_name
TEXT
DEFAULT
NULL
,
text_column_name
TEXT
DEFAULT
NULL
,
vector_index_type
TEXT
DEFAULT
NULL
,
-- Allowed: 'hnsw', 'ivfflat'
embeddings_available
BOOL
DEFAULT
NULL
,
embedding_model
TEXT
DEFAULT
NULL
,
num_vectors
INT
DEFAULT
NULL
,
dimensionality
INT
DEFAULT
NULL
,
distance_func
TEXT
DEFAULT
NULL
,
-- Allowed: 'cosine', 'ip', 'l2', 'l1'
quantization
TEXT
DEFAULT
NULL
,
-- Allowed: 'none', 'halfvec', 'bit'
prefilter_column_names
TEXT
[]
DEFAULT
NULL
,
memory_budget_kb
INT
DEFAULT
NULL
,
-- In KB
target_recall
FLOAT
DEFAULT
NULL
,
target_top_k
INT
DEFAULT
NULL
,
tune_vector_index
BOOL
DEFAULT
FALSE
,
-- Set to true if target_recall is set
)
RETURNS
SETOF
vector_assist
.
RECOMMENDATIONS
;
Parameters
spec_id
table_name
schema_name
vector_column_name
This column is required if you're using more than one vector column and the
text_column_name
is not declared. If you're only using
one vector column, then this parameter is optional.text_column_name
This column is required if the
vector_column_name
parameter is NULL
and there are no other vector columns.This parameter uses the
google_ml_integration
extension to
generate embeddings from the given text column.vector_index_type
-
HNSW -
IVFFlat -
SCANN
embeddings_available
FALSE
if no vector columns are detected
and the text_column_name
parameter is set.embedding_model
google_ml.models
to be used to generate the embeddings. This field is optional, unless the embeddings_available
parameter is FALSE
or NULL
.num_vectors
dismensionality
distance_func
cosine
, ip
, l2
, or l1
.quantization
none
, halfvec
, or bit
.prefilter_column_names
memory_budget_kb
target_recall
target_top_k
target_recall
parameter is
specified.tune_vector_index
TRUE
or FALSE
.Return value
Returns a table of recommendations that must be applied to set up the requested
vector workload. Each row is a single recommendation that contains an
executable SQL query and a detailed explanation of why to apply the
recommendation. The recommendation can be applied using the apply_recommendation()
function.
The recommendations table contains the following columns:
| Column name | Type | Description |
|---|---|---|
recommendation_id
|
Text | The ID of the recommendation. The recommendation is applied using this ID. |
vector_spec_id
|
Text | The ID of the vector spec that is associated with the recommendation. |
table_name
|
Text | The table name associated with the recommendation. |
schema_name
|
Text | The schema name containing the given table. |
query
|
Text | The executable SQL query to be run to achieve the outcome of the recommendation. |
recommendation
|
Text | The explanation for the recommendation, including the expected outcome once the recommendation is applied. This column also contains the reason and rationale for the recommendation. You can use this context to tune the query as necessary and regenerate recommendations. |
applied
|
Boolean | Shows whether the recommendation has been applied. |
modified
|
Boolean | Shows whether the recommendation has been modified by the user. |
created_at
|
Timestamp with time zone | The time when the recommendation was generated in the timestamp with time zone
format. For example, 2024-07-18 09:00:00-08
. |
vector_assist.list_specs
Returns the current vector spec for a given table and column.
Function
CREATE
OR
REPLACE
FUNCTION
vector_assist
.
list_specs
(
table_name
TEXT
,
column_name
TEXT
DEFAULT
NULL
)
RETURNS
SETOF
vector_assist
.
VECTOR_SPECS
Parameters
| Parameter | Required? | Description |
|---|---|---|
table_name
|
Required? | The name of the table that the vector spec is retrieved for. |
column_name
|
Optional | The column name to filter the table on before returning the spec. If the column name is specified, then specifications that contain text or vector column names that match this column name are returned. |
Return value
Returns a table of specifications for the given table and optionally, column name.
vector_assist.modify_spec
Modifies an existing vector spec. When the vector spec is modified, the associated recommendations are regenerated based on the new specs.
Function
CREATE
OR
REPLACE
FUNCTION
vector_assist
.
modify_spec
(
spec_id
TEXT
,
table_name
TEXT
DEFAULT
NULL
,
schema_name
TEXT
DEFAULT
NULL
,
vector_column_name
TEXT
DEFAULT
NULL
,
text_column_name
TEXT
DEFAULT
NULL
,
vector_index_type
TEXT
DEFAULT
NULL
,
embeddings_available
BOOL
DEFAULT
NULL
,
num_vectors
INT
DEFAULT
NULL
,
dimensionality
INT
DEFAULT
NULL
,
embedding_model
TEXT
DEFAULT
NULL
,
prefilter_column_names
TEXT
[]
DEFAULT
NULL
,
distance_func
TEXT
DEFAULT
NULL
,
quantization
TEXT
DEFAULT
NULL
,
memory_budget_kb
INT
DEFAULT
NULL
,
target_recall
FLOAT
DEFAULT
NULL
,
target_top_k
INT
DEFAULT
NULL
,
tune_vector_index
BOOL
DEFAULT
NULL
)
RETURNS
SETOF
vector_assist
.
RECOMMENDATIONS
Parameters
spec_id
table_name
schema_name
vector_column_name
This column is required if you're using more than one vector column and the
text_column_name
is not declared. If you're only using
one vector column, then this parameter is optional.text_column_name
This column is required if the
vector_column_name
parameter is NULL
and there are no other vector columns.This parameter uses the
google_ml_integration
extension to
generate embeddings from the given text column.vector_index_type
-
HNSW -
IVFFlat -
SCANN
embeddings_available
FALSE
if no vector columns are detected
and the text_column_name
parameter is set.embedding_model
google_ml.models
to be used to generate the embeddings. This field is optional, unless the embeddings_available
parameter is FALSE
or NULL
.num_vectors
dismensionality
distance_func
cosine
, ip
, l2
, or l1
.quantization
none
, halfvec
, or bit
.prefilter_column_names
memory_budget_kb
target_recall
target_top_k
target_recall
parameter is
specified.tune_vector_index
TRUE
or FALSE
.Return value
Returns an updated table of recommendations that must be applied to set up the requested vector workload. Each row is a single recommendation that contains an executable SQL query and a detailed explanation of why to apply the recommendation. The recommendation can be applied using the apply_recommendation() function.
The recommendations table contains the following columns:
| Column name | Type | Description |
|---|---|---|
recommendation_id
|
Text | The ID of the recommendation. The recommendation is applied using this ID. |
vector_spec_id
|
Text | The ID of the vector spec that is associated with the recommendation. |
table_name
|
Text | The table name associated with the recommendation. |
schema_name
|
Text | The schema name containing the given table. |
query
|
Text | The executable SQL query to be run to achieve the outcome of the recommendation. |
recommendation
|
Text | The explanation for the recommendation, including the expected outcome once the recommendation is applied. This column also contains the reason and rationale for the recommendation. You can use this context to tune the query as necessary and regenerate recommendations. |
applied
|
Boolean | Shows whether the recommendation has been applied. |
modified
|
Boolean | Shows whether the recommendation has been modified by the user. |
created_at
|
Timestamp with timezone | The time when the recommendation was generated. |
vector_assist.get_recommendations
Returns recommendations associated with a specific vector spec_id
.
Function
CREATE
OR
REPLACE
FUNCTION
vector_assist
.
get_recommendations
(
spec_id
TEXT
)
RETURNS
SETOF
vector_assist
.
RECOMMENDATIONS
;
Parameters
| Parameter | Required? | Description |
|---|---|---|
spec_id
|
Required? | Gets recommendations for the specified vector spec_id
. |
Return value
Returns a table of requested recommendations.
The recommendations table contains the following columns:
| Column name | Type | Description |
|---|---|---|
recommendation_id
|
Text | The ID of the recommendation. The recommendation is applied using this ID. |
vector_spec_id
|
Text | The ID of the vector spec that is associated with the recommendation. |
table_name
|
Text | The table name associated with the recommendation. |
schema_name
|
Text | The schema name containing the given table. |
query
|
Text | The executable SQL query to be run to achieve the outcome of the recommendation. |
recommendation
|
Text | The explanation for the recommendation, including the expected outcome once the recommendation is applied. This column also contains the reason and rationale for the recommendation. You can use this context to tune the query as necessary and regenerate recommendations. |
applied
|
Boolean | Shows whether the recommendation has been applied. |
modified
|
Boolean | Shows whether the recommendation has been modified by the user. |
created_at
|
Timestamp with timezone | The time when the recommendation was generated. |
vector_assist.apply_recommendation
Applies a single recommendation using the recommendation_id
.
Function
CREATE
OR
REPLACE
FUNCTION
vector_assist
.
get_recommendations
(
spec_id
TEXT
)
RETURNS
SETOF
vector_assist
.
RECOMMENDATIONS
;
Parameters
| Parameter | Required? | Description |
|---|---|---|
recommenation_id
|
Required? | The ID of the vector recommendation to apply. |
Return value
Returns a boolean that confirms if a recommendation was successfully applied
and update the vector_assist.RECOMMENDATIONS
table column applied
to TRUE
.
If vector assist is unable to apply the recommendation, then it raises an error message on failure.
vector_assist.apply_spec
Applies all recommendations associated with a specific vector spec_id
or
table name. This function goes through all recommendations and runs the vector_assist.apply_recommendation
function on
each recommendation.
Must specify either a spec_id
or table_name
to run function.
Function
CREATE
OR
REPLACE
FUNCTION
vector_assist
.
apply_spec
(
spec_id
TEXT
DEFAULT
NULL
,
table_name
TEXT
DEFAULT
NULL
,
schema_name
TEXT
DEFAULT
NULL
,
column_name
TEXT
DEFAULT
NULL
-- text_column_name or vector_column_name
)
RETURNS
BOOLEAN
;
Parameters
| Parameter | Required? | Description |
|---|---|---|
spec_id
|
Optional | Applies all recommendations for the given vector spec_id
. |
table_name
|
Optional | Applies all recommendations for the given table. |
schema_name
|
Optional | The schema containing the specified table. |
column_name
|
Optional | Identifies the text_column_name
or vector_column_name
to use if the table contains multiple
vector specs. |
Return value
Returns a boolean that confirms if all recommendations were successfully applied
and sets the value in the vector_assist.RECOMMENDATIONS
table column applied
to TRUE
for all recommendations.
If vector assist is unable to apply the recommendation, then it raises an error message on failure.
vector_assist.modify_recommendation
Modifies the query for a specific recommendation and sets the modified
field in the vector_assist.RECOMMENDATIONS
table for the associated
recommendation to TRUE
.
Function
CREATE
OR
REPLACE
FUNCTION
vector_assist
.
modify_recommendation
(
recommendation_id
TEXT
,
modified_query
TEXT
)
RETURNS
BOOLEAN
;
Parameters
| Parameter | Required? | Description |
|---|---|---|
recommendation_id
|
Required? | The ID of the recommendation to modify. |
modified_query
|
Required? | A user-modified SQL query for the recommendation. |
Return value
Returns a boolean that confirms if a recommendation was successfully updated
and sets the vector_assist.RECOMMENDATIONS
table column modified
to TRUE
.
If vector assist is unable to update the recommendation, then it raises an error message on failure.
vector_assist.generate_query
Generates an optimized vector search query based on the defined vector spec
and search parameters. This function might tune the ef_search
value to
meet the set target_recall
if applicable.
Function
CREATE
OR
REPLACE
FUNCTION
vector_assist
.
generate_query
(
spec_id
TEXT
DEFAULT
NULL
,
table_name
TEXT
DEFAULT
NULL
,
schema_name
TEXT
DEFAULT
NULL
,
column_name
TEXT
DEFAULT
NULL
,
-- text_column_name or vector_column_name of the spec
search_text
TEXT
DEFAULT
NULL
,
search_vector
VECTOR
DEFAULT
NULL
,
-- e.g. '[1.0,2.0,3.0]'::vector
output_column_names
TEXT
[]
DEFAULT
NULL
,
-- Columns to retrieve, NULL for SELECT *
top_k
INT
DEFAULT
NULL
,
filter_expressions
TEXT
[]
DEFAULT
NULL
,
target_recall
FLOAT
DEFAULT
NULL
,
-- Inherited from spec, can be overridden
iterative_index_search
BOOL
DEFAULT
NULL
)
RETURNS
TEXT
;
-- Returns the text representing the search query
Parameters
| Parameter | Required? | Description |
|---|---|---|
spec_id
|
Optional | Specifies the spec_id
to generate the query for. |
table_name
|
Optional | Specifies the table name to generate the search query for if the spec_id
isn't provided. If a table contains multiple specs,
then the parameter returns an error. |
column_name
|
Optional | Specifics the column name to generate the search query for if the spec_id
isn't provided. If the column contains multiple specs,
then the parameter returns an error. The column_name
might be
the text_column_name
or the vector_column_name
. |
output_column_name
|
Optional | The column names to retrieve in the output query. To retrieve all
columns, set this parameter to NULL
. |
search_text
|
Optional | The search text to generate embeddings for. Requires the embedding_model
in the
vector spec. The embedding is generated using the model from the spec.
You can only set either the search_text
or the search_vector
parameter. |
search_vector
|
Optional | The vector for the search query. You can only set either the search_text
or the search_vector
parameter |
top_k
|
Optional | The number of nearest neighbors to return. |
filter_expressions
|
Optional | The filter expressions to apply in the search query. The filters can be applied to fields in the table, such as price < 100. |
iterative_index_search
|
Optional | Sets whether to perform iterative index search for filtered queries.This parameter overrides the settings in the vector spec. |
target_recall
|
Optional | The target recall for the search query only. This parameter
overrides the settings in the vector spec and tunes ef_search
. |
Return value
Returns a text containing the vector search query for the given parameters. This query can be executed or saved to run later.
vector_assist.evaluate_query_recall
Evaluates the recall of the vector index for a given query. This function uses the database and index configurations in a JSON string as inputs.
Function
CREATE
OR
REPLACE
FUNCTION
vector_assist
.
evaluate_query_recall
(
IN
ann_query
text
,
IN
vector_search_configurations
json
DEFAULT
NULL
,
OUT
recall
float
,
OUT
ann_execution_time
float
,
OUT
ground_truth_execution_time
float
,
OUT
index_type
text
)
RETURNS
RECORD
Parameters
| Parameter | Required? | Description |
|---|---|---|
ann_query
|
Required? | The SQL query for which recall needs to be evaluated. This query
should be a pgvector
ANN query. |
vector_search_configurations
|
Optional | The configurations that can be set for the ANN query. This parameter must be in JSON format. |
Return value
Returns a table that evaluates the recall of the vector index for the given query.
The table contains the following columns:
| Column name | Type | Description |
|---|---|---|
recall
|
Float | The percentage of vectors that the index returns, which are true nearest neighbors. This metric is used to quantify search quality. This function lets you tune the parameters to return the expected vector query recall results. |
ann_execution_time
|
Float | The time it takes a vector query to execute using index scans. |
ground_truth_execution_time
|
Float | The time it takes the query to run using a sequential scan. |
Example
The following example evaluates the recall for a HNSW
index and overrides the HNSW.ef_search
configuration parameter:
SELECT
*
FROM
vector_assist
.
evaluate_query_recall
(
ann_query
=
>
'SELECT id FROM items ORDER BY embedding <=> ''[1,2,3]'' LIMIT 10'
,
vector_search_configurations
=
>
'{"hnsw.ef_search": 30}'
);

