Get a model

Gets a model using the get_model method.

Explore further

For detailed documentation that includes this code sample, see the following:

Code sample

Java

Before trying this sample, follow the Java setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Java API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  import 
  
 com.google.cloud.aiplatform.v1. DeployedModelRef 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. EnvVar 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. Model 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. Model 
. ExportFormat 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. ModelContainerSpec 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. ModelName 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. ModelServiceClient 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. ModelServiceSettings 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. Port 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. PredictSchemata 
 
 ; 
 import 
  
 java.io.IOException 
 ; 
 public 
  
 class 
 GetModelSample 
  
 { 
  
 public 
  
 static 
  
 void 
  
 main 
 ( 
 String 
 [] 
  
 args 
 ) 
  
 throws 
  
 IOException 
  
 { 
  
 // TODO(developer): Replace these variables before running the sample. 
  
 String 
  
 project 
  
 = 
  
 "YOUR_PROJECT_ID" 
 ; 
  
 String 
  
 modelId 
  
 = 
  
 "YOUR_MODEL_ID" 
 ; 
  
 getModelSample 
 ( 
 project 
 , 
  
 modelId 
 ); 
  
 } 
  
 static 
  
 void 
  
 getModelSample 
 ( 
 String 
  
 project 
 , 
  
 String 
  
 modelId 
 ) 
  
 throws 
  
 IOException 
  
 { 
  
  ModelServiceSettings 
 
  
 modelServiceSettings 
  
 = 
  
  ModelServiceSettings 
 
 . 
 newBuilder 
 () 
  
 . 
 setEndpoint 
 ( 
 "us-central1-aiplatform.googleapis.com:443" 
 ) 
  
 . 
 build 
 (); 
  
 // Initialize client that will be used to send requests. This client only needs to be created 
  
 // once, and can be reused for multiple requests. After completing all of your requests, call 
  
 // the "close" method on the client to safely clean up any remaining background resources. 
  
 try 
  
 ( 
  ModelServiceClient 
 
  
 modelServiceClient 
  
 = 
  
  ModelServiceClient 
 
 . 
 create 
 ( 
 modelServiceSettings 
 )) 
  
 { 
  
 String 
  
 location 
  
 = 
  
 "us-central1" 
 ; 
  
  ModelName 
 
  
 modelName 
  
 = 
  
  ModelName 
 
 . 
 of 
 ( 
 project 
 , 
  
 location 
 , 
  
 modelId 
 ); 
  
  Model 
 
  
 modelResponse 
  
 = 
  
 modelServiceClient 
 . 
 getModel 
 ( 
 modelName 
 ); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "Get Model response" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tName: %s\n" 
 , 
  
 modelResponse 
 . 
  getName 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tDisplay Name: %s\n" 
 , 
  
 modelResponse 
 . 
  getDisplayName 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tDescription: %s\n" 
 , 
  
 modelResponse 
 . 
  getDescription 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tMetadata Schema Uri: %s\n" 
 , 
  
 modelResponse 
 . 
  getMetadataSchemaUri 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tMetadata: %s\n" 
 , 
  
 modelResponse 
 . 
  getMetadata 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tTraining Pipeline: %s\n" 
 , 
  
 modelResponse 
 . 
  getTrainingPipeline 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tArtifact Uri: %s\n" 
 , 
  
 modelResponse 
 . 
  getArtifactUri 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
  
 "\tSupported Deployment Resources Types: %s\n" 
 , 
  
 modelResponse 
 . 
  getSupportedDeploymentResourcesTypesList 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
  
 "\tSupported Input Storage Formats: %s\n" 
 , 
  
 modelResponse 
 . 
  getSupportedInputStorageFormatsList 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
  
 "\tSupported Output Storage Formats: %s\n" 
 , 
  
 modelResponse 
 . 
  getSupportedOutputStorageFormatsList 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tCreate Time: %s\n" 
 , 
  
 modelResponse 
 . 
  getCreateTime 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tUpdate Time: %s\n" 
 , 
  
 modelResponse 
 . 
  getUpdateTime 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tLabels: %s\n" 
 , 
  
 modelResponse 
 . 
  getLabelsMap 
 
 ()); 
  
  PredictSchemata 
 
  
 predictSchemata 
  
 = 
  
 modelResponse 
 . 
  getPredictSchemata 
 
 (); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\tPredict Schemata" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tInstance Schema Uri: %s\n" 
 , 
  
 predictSchemata 
 . 
  getInstanceSchemaUri 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
  
 "\t\tParameters Schema Uri: %s\n" 
 , 
  
 predictSchemata 
 . 
  getParametersSchemaUri 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
  
 "\t\tPrediction Schema Uri: %s\n" 
 , 
  
 predictSchemata 
 . 
  getPredictionSchemaUri 
 
 ()); 
  
 for 
  
 ( 
  ExportFormat 
 
  
 exportFormat 
  
 : 
  
 modelResponse 
 . 
  getSupportedExportFormatsList 
 
 ()) 
  
 { 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\tSupported Export Format" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tId: %s\n" 
 , 
  
 exportFormat 
 . 
 getId 
 ()); 
  
 } 
  
  ModelContainerSpec 
 
  
 containerSpec 
  
 = 
  
 modelResponse 
 . 
  getContainerSpec 
 
 (); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\tContainer Spec" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tImage Uri: %s\n" 
 , 
  
 containerSpec 
 . 
  getImageUri 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tCommand: %s\n" 
 , 
  
 containerSpec 
 . 
  getCommandList 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tArgs: %s\n" 
 , 
  
 containerSpec 
 . 
  getArgsList 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tPredict Route: %s\n" 
 , 
  
 containerSpec 
 . 
  getPredictRoute 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tHealth Route: %s\n" 
 , 
  
 containerSpec 
 . 
  getHealthRoute 
 
 ()); 
  
 for 
  
 ( 
  EnvVar 
 
  
 envVar 
  
 : 
  
 containerSpec 
 . 
  getEnvList 
 
 ()) 
  
 { 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\t\tEnv" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\t\tName: %s\n" 
 , 
  
 envVar 
 . 
 getName 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\t\tValue: %s\n" 
 , 
  
 envVar 
 . 
 getValue 
 ()); 
  
 } 
  
 for 
  
 ( 
  Port 
 
  
 port 
  
 : 
  
 containerSpec 
 . 
  getPortsList 
 
 ()) 
  
 { 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\t\tPort" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\t\tContainer Port: %s\n" 
 , 
  
 port 
 . 
 getContainerPort 
 ()); 
  
 } 
  
 for 
  
 ( 
  DeployedModelRef 
 
  
 deployedModelRef 
  
 : 
  
 modelResponse 
 . 
  getDeployedModelsList 
 
 ()) 
  
 { 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\tDeployed Model" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tEndpoint: %s\n" 
 , 
  
 deployedModelRef 
 . 
 getEndpoint 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tDeployed Model Id: %s\n" 
 , 
  
 deployedModelRef 
 . 
 getDeployedModelId 
 ()); 
  
 } 
  
 } 
  
 } 
 } 
 

Node.js

Before trying this sample, follow the Node.js setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Node.js API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  /** 
 * TODO(developer): Uncomment these variables before running the sample.\ 
 * (Not necessary if passing values as arguments) 
 */ 
 // const modelId = 'YOUR_MODEL_ID'; 
 // const project = 'YOUR_PROJECT_ID'; 
 // const location = 'YOUR_PROJECT_LOCATION'; 
 // Imports the Google Cloud Model Service Client library 
 const 
  
 { 
 ModelServiceClient 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/aiplatform 
' 
 ); 
 // Specifies the location of the api endpoint 
 const 
  
 clientOptions 
  
 = 
  
 { 
  
 apiEndpoint 
 : 
  
 'us-central1-aiplatform.googleapis.com' 
 , 
 }; 
 // Instantiates a client 
 const 
  
 modelServiceClient 
  
 = 
  
 new 
  
  ModelServiceClient 
 
 ( 
 clientOptions 
 ); 
 async 
  
 function 
  
 getModel 
 () 
  
 { 
  
 // Configure the parent resource 
  
 const 
  
 name 
  
 = 
  
 `projects/ 
 ${ 
 project 
 } 
 /locations/ 
 ${ 
 location 
 } 
 /models/ 
 ${ 
 modelId 
 } 
 ` 
 ; 
  
 const 
  
 request 
  
 = 
  
 { 
  
 name 
 , 
  
 }; 
  
 // Get and print out a list of all the endpoints for this resource 
  
 const 
  
 [ 
 response 
 ] 
  
 = 
  
 await 
  
 modelServiceClient 
 . 
 getModel 
 ( 
 request 
 ); 
  
 console 
 . 
 log 
 ( 
 'Get model response' 
 ); 
  
 console 
 . 
 log 
 ( 
 `\tName : 
 ${ 
 response 
 . 
 name 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
 `\tDisplayName : 
 ${ 
 response 
 . 
 displayName 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
 `\tDescription : 
 ${ 
 response 
 . 
 description 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
 `\tMetadata schema uri : 
 ${ 
 response 
 . 
 metadataSchemaUri 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
 `\tMetadata : 
 ${ 
 JSON 
 . 
 stringify 
 ( 
 response 
 . 
 metadata 
 ) 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
 `\tTraining pipeline : 
 ${ 
 response 
 . 
 trainingPipeline 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
 `\tArtifact uri : 
 ${ 
 response 
 . 
 artifactUri 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
  
 `\tSupported deployment resource types : \ 
  
 ${ 
 response 
 . 
 supportedDeploymentResourceTypes 
 } 
 ` 
  
 ); 
  
 console 
 . 
 log 
 ( 
  
 `\tSupported input storage formats : \ 
  
 ${ 
 response 
 . 
 supportedInputStorageFormats 
 } 
 ` 
  
 ); 
  
 console 
 . 
 log 
 ( 
  
 `\tSupported output storage formats : \ 
  
 ${ 
 response 
 . 
 supportedOutputStoragFormats 
 } 
 ` 
  
 ); 
  
 console 
 . 
 log 
 ( 
 `\tCreate time : 
 ${ 
 JSON 
 . 
 stringify 
 ( 
 response 
 . 
 createTime 
 ) 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
 `\tUpdate time : 
 ${ 
 JSON 
 . 
 stringify 
 ( 
 response 
 . 
 updateTime 
 ) 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
 `\tLabels : 
 ${ 
 JSON 
 . 
 stringify 
 ( 
 response 
 . 
 labels 
 ) 
 } 
 ` 
 ); 
  
 const 
  
 predictSchemata 
  
 = 
  
 response 
 . 
 predictSchemata 
 ; 
  
 console 
 . 
 log 
 ( 
 '\tPredict schemata' 
 ); 
  
 console 
 . 
 log 
 ( 
 `\tInstance schema uri : 
 ${ 
 predictSchemata 
 . 
 instanceSchemaUri 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
  
 `\tParameters schema uri : 
 ${ 
 predictSchemata 
 . 
 prametersSchemaUri 
 } 
 ` 
  
 ); 
  
 console 
 . 
 log 
 ( 
  
 `\tPrediction schema uri : 
 ${ 
 predictSchemata 
 . 
 predictionSchemaUri 
 } 
 ` 
  
 ); 
  
 const 
  
 [ 
 supportedExportFormats 
 ] 
  
 = 
  
 response 
 . 
 supportedExportFormats 
 ; 
  
 console 
 . 
 log 
 ( 
 '\tSupported export formats' 
 ); 
  
 console 
 . 
 log 
 ( 
 `\t 
 ${ 
 supportedExportFormats 
 } 
 ` 
 ); 
  
 const 
  
 containerSpec 
  
 = 
  
 response 
 . 
 containerSpec 
 ; 
  
 console 
 . 
 log 
 ( 
 '\tContainer Spec' 
 ); 
  
 if 
  
 ( 
 ! 
 containerSpec 
 ) 
  
 { 
  
 console 
 . 
 log 
 ( 
 `\t\t 
 ${ 
 JSON 
 . 
 stringify 
 ( 
 containerSpec 
 ) 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
 '\t\tImage uri : {}' 
 ); 
  
 console 
 . 
 log 
 ( 
 '\t\tCommand : {}' 
 ); 
  
 console 
 . 
 log 
 ( 
 '\t\tArgs : {}' 
 ); 
  
 console 
 . 
 log 
 ( 
 '\t\tPredict route : {}' 
 ); 
  
 console 
 . 
 log 
 ( 
 '\t\tHealth route : {}' 
 ); 
  
 console 
 . 
 log 
 ( 
 '\t\tEnv' 
 ); 
  
 console 
 . 
 log 
 ( 
 '\t\t\t{}' 
 ); 
  
 console 
 . 
 log 
 ( 
 '\t\tPort' 
 ); 
  
 console 
 . 
 log 
 ( 
 '\t\t{}' 
 ); 
  
 } 
  
 else 
  
 { 
  
 console 
 . 
 log 
 ( 
 `\t\t 
 ${ 
 JSON 
 . 
 stringify 
 ( 
 containerSpec 
 ) 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
 `\t\tImage uri : 
 ${ 
 containerSpec 
 . 
 imageUri 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
 `\t\tCommand : 
 ${ 
 containerSpec 
 . 
 command 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
 `\t\tArgs : 
 ${ 
 containerSpec 
 . 
 args 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
 `\t\tPredict route : 
 ${ 
 containerSpec 
 . 
 predictRoute 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
 `\t\tHealth route : 
 ${ 
 containerSpec 
 . 
 healthRoute 
 } 
 ` 
 ); 
  
 const 
  
 env 
  
 = 
  
 containerSpec 
 . 
 env 
 ; 
  
 console 
 . 
 log 
 ( 
 '\t\tEnv' 
 ); 
  
 console 
 . 
 log 
 ( 
 `\t\t\t 
 ${ 
 JSON 
 . 
 stringify 
 ( 
 env 
 ) 
 } 
 ` 
 ); 
  
 const 
  
 ports 
  
 = 
  
 containerSpec 
 . 
 ports 
 ; 
  
 console 
 . 
 log 
 ( 
 '\t\tPort' 
 ); 
  
 console 
 . 
 log 
 ( 
 `\t\t\t 
 ${ 
 JSON 
 . 
 stringify 
 ( 
 ports 
 ) 
 } 
 ` 
 ); 
  
 } 
  
 const 
  
 [ 
 deployedModels 
 ] 
  
 = 
  
 response 
 . 
 deployedModels 
 ; 
  
 console 
 . 
 log 
 ( 
 '\tDeployed models' 
 ); 
  
 console 
 . 
 log 
 ( 
 '\t\t' 
 , 
  
 deployedModels 
 ); 
 } 
 getModel 
 (); 
 

Python

Before trying this sample, follow the Python setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Python API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  from 
  
 google.cloud 
  
 import 
 aiplatform 
 def 
  
 get_model_sample 
 ( 
 project 
 : 
 str 
 , 
 model_id 
 : 
 str 
 , 
 location 
 : 
 str 
 = 
 "us-central1" 
 , 
 api_endpoint 
 : 
 str 
 = 
 "us-central1-aiplatform.googleapis.com" 
 , 
 ): 
 # The AI Platform services require regional API endpoints. 
 client_options 
 = 
 { 
 "api_endpoint" 
 : 
 api_endpoint 
 } 
 # Initialize client that will be used to create and send requests. 
 # This client only needs to be created once, and can be reused for multiple requests. 
 client 
 = 
 aiplatform 
 . 
 gapic 
 . 
  ModelServiceClient 
 
 ( 
 client_options 
 = 
 client_options 
 ) 
 name 
 = 
 client 
 . 
  model_path 
 
 ( 
 project 
 = 
 project 
 , 
 location 
 = 
 location 
 , 
 model 
 = 
 model_id 
 ) 
 response 
 = 
 client 
 . 
  get_model 
 
 ( 
 name 
 = 
 name 
 ) 
 print 
 ( 
 "response:" 
 , 
 response 
 ) 
 

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser .

Design a Mobile Site
View Site in Mobile | Classic
Share by: