Get a training pipeline

Gets a training pipeline using the get_training_pipeline method.

Explore further

For detailed documentation that includes this code sample, see the following:

Code sample

Java

Before trying this sample, follow the Java setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Java API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  import 
  
 com.google.cloud.aiplatform.v1. DeployedModelRef 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. EnvVar 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. FilterSplit 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. FractionSplit 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. InputDataConfig 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. Model 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. ModelContainerSpec 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. PipelineServiceClient 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. PipelineServiceSettings 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. Port 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. PredefinedSplit 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. PredictSchemata 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. TimestampSplit 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. TrainingPipeline 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. TrainingPipelineName 
 
 ; 
 import 
  
 com.google.rpc. Status 
 
 ; 
 import 
  
 java.io.IOException 
 ; 
 public 
  
 class 
 GetTrainingPipelineSample 
  
 { 
  
 public 
  
 static 
  
 void 
  
 main 
 ( 
 String 
 [] 
  
 args 
 ) 
  
 throws 
  
 IOException 
  
 { 
  
 // TODO(developer): Replace these variables before running the sample. 
  
 String 
  
 project 
  
 = 
  
 "YOUR_PROJECT_ID" 
 ; 
  
 String 
  
 trainingPipelineId 
  
 = 
  
 "YOUR_TRAINING_PIPELINE_ID" 
 ; 
  
 getTrainingPipeline 
 ( 
 project 
 , 
  
 trainingPipelineId 
 ); 
  
 } 
  
 static 
  
 void 
  
 getTrainingPipeline 
 ( 
 String 
  
 project 
 , 
  
 String 
  
 trainingPipelineId 
 ) 
  
 throws 
  
 IOException 
  
 { 
  
  PipelineServiceSettings 
 
  
 pipelineServiceSettings 
  
 = 
  
  PipelineServiceSettings 
 
 . 
 newBuilder 
 () 
  
 . 
 setEndpoint 
 ( 
 "us-central1-aiplatform.googleapis.com:443" 
 ) 
  
 . 
 build 
 (); 
  
 // Initialize client that will be used to send requests. This client only needs to be created 
  
 // once, and can be reused for multiple requests. After completing all of your requests, call 
  
 // the "close" method on the client to safely clean up any remaining background resources. 
  
 try 
  
 ( 
  PipelineServiceClient 
 
  
 pipelineServiceClient 
  
 = 
  
  PipelineServiceClient 
 
 . 
 create 
 ( 
 pipelineServiceSettings 
 )) 
  
 { 
  
 String 
  
 location 
  
 = 
  
 "us-central1" 
 ; 
  
  TrainingPipelineName 
 
  
 trainingPipelineName 
  
 = 
  
  TrainingPipelineName 
 
 . 
 of 
 ( 
 project 
 , 
  
 location 
 , 
  
 trainingPipelineId 
 ); 
  
  TrainingPipeline 
 
  
 trainingPipelineResponse 
  
 = 
  
 pipelineServiceClient 
 . 
 getTrainingPipeline 
 ( 
 trainingPipelineName 
 ); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "Get Training Pipeline Response" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tName: %s\n" 
 , 
  
 trainingPipelineResponse 
 . 
  getName 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tDisplay Name: %s\n" 
 , 
  
 trainingPipelineResponse 
 . 
  getDisplayName 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
  
 "\tTraining Task Definition: %s\n" 
 , 
  
 trainingPipelineResponse 
 . 
  getTrainingTaskDefinition 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
  
 "\tTraining Task Inputs: %s\n" 
 , 
  
 trainingPipelineResponse 
 . 
  getTrainingTaskInputs 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
  
 "\tTraining Task Metadata: %s\n" 
 , 
  
 trainingPipelineResponse 
 . 
  getTrainingTaskMetadata 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tState: %s\n" 
 , 
  
 trainingPipelineResponse 
 . 
  getState 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tCreate Time: %s\n" 
 , 
  
 trainingPipelineResponse 
 . 
  getCreateTime 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tStart Time: %s\n" 
 , 
  
 trainingPipelineResponse 
 . 
  getStartTime 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tEnd Time: %s\n" 
 , 
  
 trainingPipelineResponse 
 . 
  getEndTime 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tUpdate Time: %s\n" 
 , 
  
 trainingPipelineResponse 
 . 
  getUpdateTime 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tLabels: %s\n" 
 , 
  
 trainingPipelineResponse 
 . 
  getLabelsMap 
 
 ()); 
  
  InputDataConfig 
 
  
 inputDataConfig 
  
 = 
  
 trainingPipelineResponse 
 . 
  getInputDataConfig 
 
 (); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\tInput Data Config" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tDataset Id: %s\n" 
 , 
  
 inputDataConfig 
 . 
  getDatasetId 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tAnnotations Filter: %s\n" 
 , 
  
 inputDataConfig 
 . 
  getAnnotationsFilter 
 
 ()); 
  
  FractionSplit 
 
  
 fractionSplit 
  
 = 
  
 inputDataConfig 
 . 
  getFractionSplit 
 
 (); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\t\tFraction Split" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\t\tTraining Fraction: %s\n" 
 , 
  
 fractionSplit 
 . 
  getTrainingFraction 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\t\tValidation Fraction: %s\n" 
 , 
  
 fractionSplit 
 . 
  getValidationFraction 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\t\tTest Fraction: %s\n" 
 , 
  
 fractionSplit 
 . 
  getTestFraction 
 
 ()); 
  
  FilterSplit 
 
  
 filterSplit 
  
 = 
  
 inputDataConfig 
 . 
  getFilterSplit 
 
 (); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\t\tFilter Split" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\t\tTraining Filter: %s\n" 
 , 
  
 filterSplit 
 . 
  getTrainingFilter 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\t\tValidation Filter: %s\n" 
 , 
  
 filterSplit 
 . 
  getValidationFilter 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\t\tTest Filter: %s\n" 
 , 
  
 filterSplit 
 . 
  getTestFilter 
 
 ()); 
  
  PredefinedSplit 
 
  
 predefinedSplit 
  
 = 
  
 inputDataConfig 
 . 
  getPredefinedSplit 
 
 (); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\t\tPredefined Split" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\t\tKey: %s\n" 
 , 
  
 predefinedSplit 
 . 
  getKey 
 
 ()); 
  
  TimestampSplit 
 
  
 timestampSplit 
  
 = 
  
 inputDataConfig 
 . 
  getTimestampSplit 
 
 (); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\t\tTimestamp Split" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\t\tTraining Fraction: %s\n" 
 , 
  
 timestampSplit 
 . 
  getTrainingFraction 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\t\tTest Fraction: %s\n" 
 , 
  
 timestampSplit 
 . 
  getTestFraction 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\t\tValidation Fraction: %s\n" 
 , 
  
 timestampSplit 
 . 
  getValidationFraction 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\t\tKey: %s\n" 
 , 
  
 timestampSplit 
 . 
  getKey 
 
 ()); 
  
  Model 
 
  
 modelResponse 
  
 = 
  
 trainingPipelineResponse 
 . 
  getModelToUpload 
 
 (); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\t\tModel to upload" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tName: %s\n" 
 , 
  
 modelResponse 
 . 
  getName 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tDisplay Name: %s\n" 
 , 
  
 modelResponse 
 . 
  getDisplayName 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tDescription: %s\n" 
 , 
  
 modelResponse 
 . 
  getDescription 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tMetadata Schema Uri: %s\n" 
 , 
  
 modelResponse 
 . 
  getMetadataSchemaUri 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tMeta Data: %s\n" 
 , 
  
 modelResponse 
 . 
  getMetadata 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tTraining Pipeline: %s\n" 
 , 
  
 modelResponse 
 . 
  getTrainingPipeline 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tArtifact Uri: %s\n" 
 , 
  
 modelResponse 
 . 
  getArtifactUri 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
  
 "\t\tSupported Deployment Resources Types: %s\n" 
 , 
  
 modelResponse 
 . 
  getSupportedDeploymentResourcesTypesList 
 
 (). 
 toString 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
  
 "\t\tSupported Input Storage Formats: %s\n" 
 , 
  
 modelResponse 
 . 
  getSupportedInputStorageFormatsList 
 
 (). 
 toString 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
  
 "\t\tSupported Output Storage Formats: %s\n" 
 , 
  
 modelResponse 
 . 
  getSupportedOutputStorageFormatsList 
 
 (). 
 toString 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tCreate Time: %s\n" 
 , 
  
 modelResponse 
 . 
  getCreateTime 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tUpdate Time: %s\n" 
 , 
  
 modelResponse 
 . 
  getUpdateTime 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tLabels: %s\n" 
 , 
  
 modelResponse 
 . 
  getLabelsMap 
 
 ()); 
  
  PredictSchemata 
 
  
 predictSchemata 
  
 = 
  
 modelResponse 
 . 
  getPredictSchemata 
 
 (); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\tPredict Schemata" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tInstance Schema Uri: %s\n" 
 , 
  
 predictSchemata 
 . 
  getInstanceSchemaUri 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
  
 "\t\tParameters Schema Uri: %s\n" 
 , 
  
 predictSchemata 
 . 
  getParametersSchemaUri 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
  
 "\t\tPrediction Schema Uri: %s\n" 
 , 
  
 predictSchemata 
 . 
  getPredictionSchemaUri 
 
 ()); 
  
 for 
  
 ( 
  Model 
 
 . 
  ExportFormat 
 
  
 supportedExportFormat 
  
 : 
  
 modelResponse 
 . 
  getSupportedExportFormatsList 
 
 ()) 
  
 { 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\tSupported Export Format" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tId: %s\n" 
 , 
  
 supportedExportFormat 
 . 
 getId 
 ()); 
  
 } 
  
  ModelContainerSpec 
 
  
 containerSpec 
  
 = 
  
 modelResponse 
 . 
  getContainerSpec 
 
 (); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\tContainer Spec" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tImage Uri: %s\n" 
 , 
  
 containerSpec 
 . 
  getImageUri 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tCommand: %s\n" 
 , 
  
 containerSpec 
 . 
  getCommandList 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tArgs: %s\n" 
 , 
  
 containerSpec 
 . 
  getArgsList 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tPredict Route: %s\n" 
 , 
  
 containerSpec 
 . 
  getPredictRoute 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tHealth Route: %s\n" 
 , 
  
 containerSpec 
 . 
  getHealthRoute 
 
 ()); 
  
 for 
  
 ( 
  EnvVar 
 
  
 envVar 
  
 : 
  
 containerSpec 
 . 
  getEnvList 
 
 ()) 
  
 { 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\t\tEnv" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\t\tName: %s\n" 
 , 
  
 envVar 
 . 
 getName 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\t\tValue: %s\n" 
 , 
  
 envVar 
 . 
 getValue 
 ()); 
  
 } 
  
 for 
  
 ( 
  Port 
 
  
 port 
  
 : 
  
 containerSpec 
 . 
  getPortsList 
 
 ()) 
  
 { 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\t\tPort" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\t\tContainer Port: %s\n" 
 , 
  
 port 
 . 
 getContainerPort 
 ()); 
  
 } 
  
 for 
  
 ( 
  DeployedModelRef 
 
  
 deployedModelRef 
  
 : 
  
 modelResponse 
 . 
  getDeployedModelsList 
 
 ()) 
  
 { 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\tDeployed Model" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tEndpoint: %s\n" 
 , 
  
 deployedModelRef 
 . 
 getEndpoint 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tDeployed Model Id: %s\n" 
 , 
  
 deployedModelRef 
 . 
 getDeployedModelId 
 ()); 
  
 } 
  
  Status 
 
  
 status 
  
 = 
  
 trainingPipelineResponse 
 . 
  getError 
 
 (); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\tError" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tCode: %s\n" 
 , 
  
 status 
 . 
  getCode 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tMessage: %s\n" 
 , 
  
 status 
 . 
  getMessage 
 
 ()); 
  
 } 
  
 } 
 } 
 

Node.js

Before trying this sample, follow the Node.js setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Node.js API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  /** 
 * TODO(developer): Uncomment these variables before running the sample.\ 
 * (Not necessary if passing values as arguments) 
 */ 
 // const trainingPipelineId = 'YOUR_MODEL_ID'; 
 // const project = 'YOUR_PROJECT_ID'; 
 // const location = 'YOUR_PROJECT_LOCATION'; 
 // Imports the Google Cloud Model Service Client library 
 const 
  
 { 
 PipelineServiceClient 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/aiplatform 
' 
 ); 
 // Specifies the location of the api endpoint 
 const 
  
 clientOptions 
  
 = 
  
 { 
  
 apiEndpoint 
 : 
  
 'us-central1-aiplatform.googleapis.com' 
 , 
 }; 
 // Instantiates a client 
 const 
  
 pipelineServiceClient 
  
 = 
  
 new 
  
  PipelineServiceClient 
 
 ( 
 clientOptions 
 ); 
 async 
  
 function 
  
 getTrainingPipeline 
 () 
  
 { 
  
 // Configure the parent resource 
  
 const 
  
 name 
  
 = 
  
 pipelineServiceClient 
 . 
 trainingPipelinePath 
 ( 
  
 project 
 , 
  
 location 
 , 
  
 trainingPipelineId 
  
 ); 
  
 const 
  
 request 
  
 = 
  
 { 
  
 name 
 , 
  
 }; 
  
 // Get and print out a list of all the endpoints for this resource 
  
 const 
  
 [ 
 response 
 ] 
  
 = 
  
 await 
  
 pipelineServiceClient 
 . 
 getTrainingPipeline 
 ( 
 request 
 ); 
  
 console 
 . 
 log 
 ( 
 'Get training pipeline response' 
 ); 
  
 console 
 . 
 log 
 ( 
 `\tTraining pipeline name: 
 ${ 
 response 
 . 
 displayName 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
 `\tTraining pipeline state: 
 ${ 
 response 
 . 
 state 
 } 
 ` 
 ); 
 } 
 getTrainingPipeline 
 (); 
 

Python

Before trying this sample, follow the Python setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Python API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  from 
  
 google.cloud 
  
 import 
 aiplatform 
 def 
  
 get_training_pipeline_sample 
 ( 
 project 
 : 
 str 
 , 
 training_pipeline_id 
 : 
 str 
 , 
 location 
 : 
 str 
 = 
 "us-central1" 
 , 
 api_endpoint 
 : 
 str 
 = 
 "us-central1-aiplatform.googleapis.com" 
 , 
 ): 
 # The AI Platform services require regional API endpoints. 
 client_options 
 = 
 { 
 "api_endpoint" 
 : 
 api_endpoint 
 } 
 # Initialize client that will be used to create and send requests. 
 # This client only needs to be created once, and can be reused for multiple requests. 
 client 
 = 
 aiplatform 
 . 
 gapic 
 . 
  PipelineServiceClient 
 
 ( 
 client_options 
 = 
 client_options 
 ) 
 name 
 = 
 client 
 . 
  training_pipeline_path 
 
 ( 
 project 
 = 
 project 
 , 
 location 
 = 
 location 
 , 
 training_pipeline 
 = 
 training_pipeline_id 
 ) 
 response 
 = 
 client 
 . 
  get_training_pipeline 
 
 ( 
 name 
 = 
 name 
 ) 
 print 
 ( 
 "response:" 
 , 
 response 
 ) 
 

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser .

Design a Mobile Site
View Site in Mobile | Classic
Share by: