Tune language foundation model (Generative AI)

Tune language foundation models with a tuning dataset.

Code sample

Java

Before trying this sample, follow the Java setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Java API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  import 
  
 com.google.cloud.aiplatform.v1. CreatePipelineJobRequest 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. LocationName 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. PipelineJob 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. PipelineJob 
. RuntimeConfig 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. PipelineServiceClient 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. PipelineServiceSettings 
 
 ; 
 import 
  
 com.google.protobuf. Value 
 
 ; 
 import 
  
 java.io.IOException 
 ; 
 import 
  
 java.util.HashMap 
 ; 
 import 
  
 java.util.Map 
 ; 
 public 
  
 class 
 CreatePipelineJobModelTuningSample 
  
 { 
  
 public 
  
 static 
  
 void 
  
 main 
 ( 
 String 
 [] 
  
 args 
 ) 
  
 throws 
  
 IOException 
  
 { 
  
 // TODO(developer): Replace these variables before running the sample. 
  
 String 
  
 project 
  
 = 
  
 "PROJECT" 
 ; 
  
 String 
  
 location 
  
 = 
  
 "europe-west4" 
 ; 
  
 // europe-west4 and us-central1 are the supported regions 
  
 String 
  
 pipelineJobDisplayName 
  
 = 
  
 "PIPELINE_JOB_DISPLAY_NAME" 
 ; 
  
 String 
  
 modelDisplayName 
  
 = 
  
 "MODEL_DISPLAY_NAME" 
 ; 
  
 String 
  
 outputDir 
  
 = 
  
 "OUTPUT_DIR" 
 ; 
  
 String 
  
 datasetUri 
  
 = 
  
 "DATASET_URI" 
 ; 
  
 int 
  
 trainingSteps 
  
 = 
  
 300 
 ; 
  
 createPipelineJobModelTuningSample 
 ( 
  
 project 
 , 
  
 location 
 , 
  
 pipelineJobDisplayName 
 , 
  
 modelDisplayName 
 , 
  
 outputDir 
 , 
  
 datasetUri 
 , 
  
 trainingSteps 
 ); 
  
 } 
  
 // Create a model tuning job 
  
 public 
  
 static 
  
 void 
  
 createPipelineJobModelTuningSample 
 ( 
  
 String 
  
 project 
 , 
  
 String 
  
 location 
 , 
  
 String 
  
 pipelineJobDisplayName 
 , 
  
 String 
  
 modelDisplayName 
 , 
  
 String 
  
 outputDir 
 , 
  
 String 
  
 datasetUri 
 , 
  
 int 
  
 trainingSteps 
 ) 
  
 throws 
  
 IOException 
  
 { 
  
 final 
  
 String 
  
 endpoint 
  
 = 
  
 String 
 . 
 format 
 ( 
 "%s-aiplatform.googleapis.com:443" 
 , 
  
 location 
 ); 
  
  PipelineServiceSettings 
 
  
 pipelineServiceSettings 
  
 = 
  
  PipelineServiceSettings 
 
 . 
 newBuilder 
 (). 
 setEndpoint 
 ( 
 endpoint 
 ). 
 build 
 (); 
  
 // Initialize client that will be used to send requests. This client only needs to be created 
  
 // once, and can be reused for multiple requests. 
  
 try 
  
 ( 
  PipelineServiceClient 
 
  
 client 
  
 = 
  
  PipelineServiceClient 
 
 . 
 create 
 ( 
 pipelineServiceSettings 
 )) 
  
 { 
  
 Map<String 
 , 
  
 Value 
>  
 parameterValues 
  
 = 
  
 new 
  
 HashMap 
<> (); 
  
 parameterValues 
 . 
 put 
 ( 
 "project" 
 , 
  
 stringToValue 
 ( 
 project 
 )); 
  
 parameterValues 
 . 
 put 
 ( 
 "model_display_name" 
 , 
  
 stringToValue 
 ( 
 modelDisplayName 
 )); 
  
 parameterValues 
 . 
 put 
 ( 
 "dataset_uri" 
 , 
  
 stringToValue 
 ( 
 datasetUri 
 )); 
  
 parameterValues 
 . 
 put 
 ( 
  
 "location" 
 , 
  
 stringToValue 
 ( 
  
 "us-central1" 
 )); 
  
 // Deployment is only supported in us-central1 for Public Preview 
  
 parameterValues 
 . 
 put 
 ( 
 "large_model_reference" 
 , 
  
 stringToValue 
 ( 
 "text-bison@001" 
 )); 
  
 parameterValues 
 . 
 put 
 ( 
 "train_steps" 
 , 
  
 numberToValue 
 ( 
 trainingSteps 
 )); 
  
 parameterValues 
 . 
 put 
 ( 
 "accelerator_type" 
 , 
  
 stringToValue 
 ( 
 "GPU" 
 )); 
  
 // Optional: GPU or TPU 
  
  RuntimeConfig 
 
  
 runtimeConfig 
  
 = 
  
  RuntimeConfig 
 
 . 
 newBuilder 
 () 
  
 . 
 setGcsOutputDirectory 
 ( 
 outputDir 
 ) 
  
 . 
  putAllParameterValues 
 
 ( 
 parameterValues 
 ) 
  
 . 
 build 
 (); 
  
  PipelineJob 
 
  
 pipelineJob 
  
 = 
  
  PipelineJob 
 
 . 
 newBuilder 
 () 
  
 . 
  setTemplateUri 
 
 ( 
  
 "https://us-kfp.pkg.dev/ml-pipeline/large-language-model-pipelines/tune-large-model/v2.0.0" 
 ) 
  
 . 
 setDisplayName 
 ( 
 pipelineJobDisplayName 
 ) 
  
 . 
  setRuntimeConfig 
 
 ( 
 runtimeConfig 
 ) 
  
 . 
 build 
 (); 
  
  LocationName 
 
  
 parent 
  
 = 
  
  LocationName 
 
 . 
 of 
 ( 
 project 
 , 
  
 location 
 ); 
  
  CreatePipelineJobRequest 
 
  
 request 
  
 = 
  
  CreatePipelineJobRequest 
 
 . 
 newBuilder 
 () 
  
 . 
 setParent 
 ( 
 parent 
 . 
  toString 
 
 ()) 
  
 . 
 setPipelineJob 
 ( 
 pipelineJob 
 ) 
  
 . 
 build 
 (); 
  
  PipelineJob 
 
  
 response 
  
 = 
  
 client 
 . 
 createPipelineJob 
 ( 
 request 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "response: %s\n" 
 , 
  
 response 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "Name: %s\n" 
 , 
  
 response 
 . 
  getName 
 
 ()); 
  
 } 
  
 } 
  
 static 
  
  Value 
 
  
 stringToValue 
 ( 
 String 
  
 str 
 ) 
  
 { 
  
 return 
  
  Value 
 
 . 
 newBuilder 
 (). 
 setStringValue 
 ( 
 str 
 ). 
 build 
 (); 
  
 } 
  
 static 
  
  Value 
 
  
 numberToValue 
 ( 
 int 
  
 n 
 ) 
  
 { 
  
 return 
  
  Value 
 
 . 
 newBuilder 
 (). 
 setNumberValue 
 ( 
 n 
 ). 
 build 
 (); 
  
 } 
 } 
 

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser .

Design a Mobile Site
View Site in Mobile | Classic
Share by: