Computes exponential of x element-wise. \(y = e^x\).
meridian
.
backend
.
exp
(
x
,
name
=
None
)
This function computes the exponential of the input tensor element-wise.
i.e. math.exp(x)
or \(e^x\), where x
is the input tensor.
\(e\) denotes Euler's number and is approximately equal to 2.718281.
Output is positive for any real input.
>>>
x
=
tf
.
constant
(
2.0
)
>>>
tf
.
math
.
exp
(
x
)
< tf
.
Tensor
:
shape
=
(),
dtype
=
float32
,
numpy
=
7.389056
>
>>>
x
=
tf
.
constant
([
2.0
,
8.0
])
>>>
tf
.
math
.
exp
(
x
)
< tf
.
Tensor
:
shape
=
(
2
,),
dtype
=
float32
,
numpy
=
array
([
7.389056
,
2980.958
],
dtype
=
float32
)
>
For complex numbers, the exponential value is calculated as \( e^{x+iy} = {e^x} {e^{iy}} = {e^x} ({\cos (y) + i \sin (y)}) \)
For 1+1j
the value would be computed as:
\(
e^1 (\cos (1) + i \sin (1)) = 2.7182817 \times (0.5403023+0.84147096j)
\)
>>>
x
=
tf
.
constant
(
1
+
1j
)
>>>
tf
.
math
.
exp
(
x
)
< tf
.
Tensor
:
shape
=
(),
dtype
=
complex128
,
numpy
=
(
1.4686939399158851
+
2.2873552871788423j
)
>
Returns
tf.Tensor
. Has the same type as x
.numpy compatibility
Equivalent to np.exp