Module: meridian.mlflow.autolog

MLflow autologging integration for Meridian.

This module enables MLflow tracking for Meridian. When enabled via autolog() , parameters, metrics, and other metadata will be automatically logged to MLflow, allowing for improved experiment tracking and analysis.

To enable MLflow autologging for your Meridian workflows, simply call autolog.autolog() once before your model run.

Example usage:

  import 
  
 mlflow 
 from 
  
 meridian.data 
  
 import 
 load 
 from 
  
 meridian.mlflow 
  
 import 
 autolog 
 from 
  
 meridian.model 
  
 import 
 model 
 # Enable autologging (call this once per session) 
 autolog 
 . 
 autolog 
 ( 
 log_metrics 
 = 
 True 
 ) 
 # Start an MLflow run (optionally name it for better grouping) 
 with 
 mlflow 
 . 
 start_run 
 ( 
 run_name 
 = 
 "my_run" 
 ): 
 # Load data 
 data 
 = 
 load 
 . 
 CsvDataLoader 
 ( 
 ... 
 ) 
 . 
 load 
 () 
 # Initialize Meridian model 
 mmm 
 = 
 model 
 . 
 Meridian 
 ( 
 input_data 
 = 
 data 
 ) 
 # Run Meridian sampling processes 
 mmm 
 . 
 sample_prior 
 ( 
 n_draws 
 = 
 100 
 , 
 seed 
 = 
 123 
 ) 
 mmm 
 . 
 sample_posterior 
 ( 
 n_chains 
 = 
 7 
 , 
 n_adapt 
 = 
 500 
 , 
 n_burnin 
 = 
 500 
 , 
 n_keep 
 = 
 1000 
 , 
 seed 
 = 
 1 
 ) 
 # After the run completes, you can retrieve run results using the MLflow client. 
 client 
 = 
 mlflow 
 . 
 tracking 
 . 
 MlflowClient 
 () 
 # Get the experiment ID for the run you just launched 
 experiment_id 
 = 
 "0" 
 # Search for runs matching the run name 
 runs 
 = 
 client 
 . 
 search_runs 
 ( 
 experiment_id 
 , 
 max_results 
 = 
 1000 
 , 
 filter_string 
 = 
 f 
 "attributes.run_name = 'my_run'" 
 ) 
 # Print details of the run 
 if 
 runs 
 : 
 print 
 ( 
 runs 
 [ 
 0 
 ]) 
 else 
 : 
 print 
 ( 
 "No runs found." 
 ) 
 

Functions

autolog(...) : Enables MLflow tracking for Meridian.

Design a Mobile Site
View Site in Mobile | Classic
Share by: