meridian.backend.repeat

Repeat elements of input .

See also tf.concat , tf.stack , tf.tile .

input
An N -dimensional Tensor.
repeats
An 1-D int Tensor. The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis. len(repeats) must equal input.shape[axis] if axis is not None.
axis
An int. The axis along which to repeat values. By default, (axis=None), use the flattened input array, and return a flat output array.
name
A name for the operation.

A Tensor which has the same shape as input , except along the given axis. If axis is None then the output array is flattened to match the flattened input array.

Example usage:

 >>>  
 repeat 
 ([ 
 'a' 
 , 
  
 'b' 
 , 
  
 'c' 
 ], 
  
 repeats 
 =[ 
 3 
 , 
  
 0 
 , 
  
 2 
 ], 
  
 axis 
 = 
 0 
 ) 
< tf 
 . 
 Tensor 
 : 
  
 shape 
 =( 
 5 
 ,), 
  
 dtype 
 = 
 string 
 , 
 numpy 
 = 
 array 
 ([ 
 b 
 'a' 
 , 
  
 b 
 'a' 
 , 
  
 b 
 'a' 
 , 
  
 b 
 'c' 
 , 
  
 b 
 'c' 
 ], 
  
 dtype 
 = 
 object 
 ) 
> 
 >>>  
 repeat 
 ([[ 
 1 
 , 
  
 2 
 ], 
  
 [ 
 3 
 , 
  
 4 
 ]], 
  
 repeats 
 =[ 
 2 
 , 
  
 3 
 ], 
  
 axis 
 = 
 0 
 ) 
< tf 
 . 
 Tensor 
 : 
  
 shape 
 =( 
 5 
 , 
  
 2 
 ), 
  
 dtype 
 = 
 int32 
 , 
  
 numpy 
 = 
 array 
 ([[ 
 1 
 , 
  
 2 
 ], 
  
 [ 
 1 
 , 
  
 2 
 ], 
  
 [ 
 3 
 , 
  
 4 
 ], 
  
 [ 
 3 
 , 
  
 4 
 ], 
  
 [ 
 3 
 , 
  
 4 
 ]], 
  
 dtype 
 = 
 int32 
 ) 
> 
 >>>  
 repeat 
 ([[ 
 1 
 , 
  
 2 
 ], 
  
 [ 
 3 
 , 
  
 4 
 ]], 
  
 repeats 
 =[ 
 2 
 , 
  
 3 
 ], 
  
 axis 
 = 
 1 
 ) 
< tf 
 . 
 Tensor 
 : 
  
 shape 
 =( 
 2 
 , 
  
 5 
 ), 
  
 dtype 
 = 
 int32 
 , 
  
 numpy 
 = 
 array 
 ([[ 
 1 
 , 
  
 1 
 , 
  
 2 
 , 
  
 2 
 , 
  
 2 
 ], 
  
 [ 
 3 
 , 
  
 3 
 , 
  
 4 
 , 
  
 4 
 , 
  
 4 
 ]], 
  
 dtype 
 = 
 int32 
 ) 
> 
 >>>  
 repeat 
 ( 
 3 
 , 
  
 repeats 
 = 
 4 
 ) 
< tf 
 . 
 Tensor 
 : 
  
 shape 
 =( 
 4 
 ,), 
  
 dtype 
 = 
 int32 
 , 
  
 numpy 
 = 
 array 
 ([ 
 3 
 , 
  
 3 
 , 
  
 3 
 , 
  
 3 
 ], 
  
 dtype 
 = 
 int32 
 ) 
> 
 >>>  
 repeat 
 ([[ 
 1 
 , 
 2 
 ], 
  
 [ 
 3 
 , 
 4 
 ]], 
  
 repeats 
 = 
 2 
 ) 
< tf 
 . 
 Tensor 
 : 
  
 shape 
 =( 
 8 
 ,), 
  
 dtype 
 = 
 int32 
 , 
 numpy 
 = 
 array 
 ([ 
 1 
 , 
  
 1 
 , 
  
 2 
 , 
  
 2 
 , 
  
 3 
 , 
  
 3 
 , 
  
 4 
 , 
  
 4 
 ], 
  
 dtype 
 = 
 int32 
 ) 
> 
Design a Mobile Site
View Site in Mobile | Classic
Share by: