Detect and track objects with ML Kit on Android

You can use ML Kit to detect and track objects in successive video frames.

When you pass an image to ML Kit, it detects up to five objects in the image along with the position of each object in the image. When detecting objects in video streams, each object has a unique ID that you can use to track the object from frame to frame. You can also optionally enable coarse object classification, which labels objects with broad category descriptions.

Try it out

Before you begin

  1. In your project-level build.gradle file, make sure to include Google's Maven repository in both your buildscript and allprojects sections.
  2. Add the dependencies for the ML Kit Android libraries to your module's app-level gradle file, which is usually app/build.gradle :
     dependencies 
      
     { 
      
     // ... 
      
     implementation 
      
     ' 
     com 
     . 
     google 
     . 
     mlkit 
     : 
     object 
     - 
     detection 
     : 
     17.0.2 
     ' 
     } 
    

1. Configure the object detector

To detect and track objects, first create an instance of ObjectDetector and optionally specify any detector settings that you want to change from the default.

  1. Configure the object detector for your use case with an ObjectDetectorOptions object. You can change the following settings:

    Object Detector Settings
    Detection mode
    STREAM_MODE (default) | SINGLE_IMAGE_MODE

    In STREAM_MODE (default), the object detector runs with low latency, but might produce incomplete results (such as unspecified bounding boxes or category labels) on the first few invocations of the detector. Also, in STREAM_MODE , the detector assigns tracking IDs to objects, which you can use to track objects across frames. Use this mode when you want to track objects, or when low latency is important, such as when processing video streams in real time.

    In SINGLE_IMAGE_MODE , the object detector returns the result after the object's bounding box is determined. If you also enable classification it returns the result after the bounding box and category label are both available. As a consequence, detection latency is potentially higher. Also, in SINGLE_IMAGE_MODE , tracking IDs are not assigned. Use this mode if latency isn't critical and you don't want to deal with partial results.

    Detect and track multiple objects
    false (default) | true

    Whether to detect and track up to five objects or only the most prominent object (default).

    Classify objects
    false (default) | true

    Whether or not to classify detected objects into coarse categories. When enabled, the object detector classifies objects into the following categories: fashion goods, food, home goods, places, and plants.

    The object detection and tracking API is optimized for these two core use cases:

    • Live detection and tracking of the most prominent object in the camera viewfinder.
    • The detection of multiple objects from a static image.

    To configure the API for these use cases:

    Kotlin

     // Live detection and tracking 
     val 
      
     options 
      
     = 
      
     ObjectDetectorOptions 
     . 
     Builder 
     () 
      
     . 
     setDetectorMode 
     ( 
     ObjectDetectorOptions 
     . 
     STREAM_MODE 
     ) 
      
     . 
     enableClassification 
     () 
      
     // Optional 
      
     . 
     build 
     () 
     // Multiple object detection in static images 
     val 
      
     options 
      
     = 
      
     ObjectDetectorOptions 
     . 
     Builder 
     () 
      
     . 
     setDetectorMode 
     ( 
     ObjectDetectorOptions 
     . 
     SINGLE_IMAGE_MODE 
     ) 
      
     . 
     enableMultipleObjects 
     () 
      
     . 
     enableClassification 
     () 
      
     // Optional 
      
     . 
     build 
     () 
    

    Java

     // Live detection and tracking 
     ObjectDetectorOptions 
      
     options 
      
     = 
      
     new 
      
     ObjectDetectorOptions 
     . 
     Builder 
     () 
      
     . 
     setDetectorMode 
     ( 
     ObjectDetectorOptions 
     . 
     STREAM_MODE 
     ) 
      
     . 
     enableClassification 
     () 
      
     // Optional 
      
     . 
     build 
     (); 
     // Multiple object detection in static images 
     ObjectDetectorOptions 
      
     options 
      
     = 
      
     new 
      
     ObjectDetectorOptions 
     . 
     Builder 
     () 
      
     . 
     setDetectorMode 
     ( 
     ObjectDetectorOptions 
     . 
     SINGLE_IMAGE_MODE 
     ) 
      
     . 
     enableMultipleObjects 
     () 
      
     . 
     enableClassification 
     () 
      
     // Optional 
      
     . 
     build 
     (); 
    
  2. Get an instance of ObjectDetector :

    Kotlin

     val 
      
     objectDetector 
      
     = 
      
     ObjectDetection 
     . 
     getClient 
     ( 
     options 
     ) 
    

    Java

     ObjectDetector 
      
     objectDetector 
      
     = 
      
     ObjectDetection 
     . 
     getClient 
     ( 
     options 
     ); 
    

2. Prepare the input image

To detect and track objects, pass images to the ObjectDetector instance's process() method.

The object detector runs directly from a Bitmap , NV21 ByteBuffer or a YUV_420_888 media.Image . Constructing an InputImage from those sources are recommended if you have direct access to one of them. If you construct an InputImage from other sources, we will handle the conversion internally for you and it might be less efficient.

For each frame of video or image in a sequence, do the following:

You can create an InputImage object from different sources, each is explained below.

Using a media.Image

To create an InputImage object from a media.Image object, such as when you capture an image from a device's camera, pass the media.Image object and the image's rotation to InputImage.fromMediaImage() .

If you use the CameraX library, the OnImageCapturedListener and ImageAnalysis.Analyzer classes calculate the rotation value for you.

Kotlin

 private 
  
 class 
  
 YourImageAnalyzer 
  
 : 
  
 ImageAnalysis 
 . 
 Analyzer 
  
 { 
  
 override 
  
 fun 
  
 analyze 
 ( 
 imageProxy 
 : 
  
 ImageProxy 
 ) 
  
 { 
  
 val 
  
 mediaImage 
  
 = 
  
 imageProxy 
 . 
 image 
  
 if 
  
 ( 
 mediaImage 
  
 != 
  
 null 
 ) 
  
 { 
  
 val 
  
 image 
  
 = 
  
 InputImage 
 . 
 fromMediaImage 
 ( 
 mediaImage 
 , 
  
 imageProxy 
 . 
 imageInfo 
 . 
 rotationDegrees 
 ) 
  
 // Pass image to an ML Kit Vision API 
  
 // ... 
  
 } 
  
 } 
 } 

Java

 private 
  
 class 
 YourAnalyzer 
  
 implements 
  
 ImageAnalysis 
 . 
 Analyzer 
  
 { 
  
 @Override 
  
 public 
  
 void 
  
 analyze 
 ( 
 ImageProxy 
  
 imageProxy 
 ) 
  
 { 
  
 Image 
  
 mediaImage 
  
 = 
  
 imageProxy 
 . 
 getImage 
 (); 
  
 if 
  
 ( 
 mediaImage 
  
 != 
  
 null 
 ) 
  
 { 
  
 InputImage 
  
 image 
  
 = 
  
 InputImage 
 . 
 fromMediaImage 
 ( 
 mediaImage 
 , 
  
 imageProxy 
 . 
 getImageInfo 
 (). 
 getRotationDegrees 
 ()); 
  
 // Pass image to an ML Kit Vision API 
  
 // ... 
  
 } 
  
 } 
 } 

If you don't use a camera library that gives you the image's rotation degree, you can calculate it from the device's rotation degree and the orientation of camera sensor in the device:

Kotlin

 private 
  
 val 
  
 ORIENTATIONS 
  
 = 
  
 SparseIntArray 
 () 
 init 
  
 { 
  
 ORIENTATIONS 
 . 
 append 
 ( 
 Surface 
 . 
 ROTATION_0 
 , 
  
 0 
 ) 
  
 ORIENTATIONS 
 . 
 append 
 ( 
 Surface 
 . 
 ROTATION_90 
 , 
  
 90 
 ) 
  
 ORIENTATIONS 
 . 
 append 
 ( 
 Surface 
 . 
 ROTATION_180 
 , 
  
 180 
 ) 
  
 ORIENTATIONS 
 . 
 append 
 ( 
 Surface 
 . 
 ROTATION_270 
 , 
  
 270 
 ) 
 } 
 /** 
 * Get the angle by which an image must be rotated given the device's current 
 * orientation. 
 */ 
 @RequiresApi 
 ( 
 api 
  
 = 
  
 Build 
 . 
 VERSION_CODES 
 . 
 LOLLIPOP 
 ) 
 @Throws 
 ( 
 CameraAccessException 
 :: 
 class 
 ) 
 private 
  
 fun 
  
 getRotationCompensation 
 ( 
 cameraId 
 : 
  
 String 
 , 
  
 activity 
 : 
  
 Activity 
 , 
  
 isFrontFacing 
 : 
  
 Boolean 
 ): 
  
 Int 
  
 { 
  
 // Get the device's current rotation relative to its "native" orientation. 
  
 // Then, from the ORIENTATIONS table, look up the angle the image must be 
  
 // rotated to compensate for the device's rotation. 
  
 val 
  
 deviceRotation 
  
 = 
  
 activity 
 . 
 windowManager 
 . 
 defaultDisplay 
 . 
 rotation 
  
 var 
  
 rotationCompensation 
  
 = 
  
 ORIENTATIONS 
 . 
 get 
 ( 
 deviceRotation 
 ) 
  
 // Get the device's sensor orientation. 
  
 val 
  
 cameraManager 
  
 = 
  
 activity 
 . 
 getSystemService 
 ( 
 CAMERA_SERVICE 
 ) 
  
 as 
  
 CameraManager 
  
 val 
  
 sensorOrientation 
  
 = 
  
 cameraManager 
  
 . 
 getCameraCharacteristics 
 ( 
 cameraId 
 ) 
  
 . 
 get 
 ( 
 CameraCharacteristics 
 . 
 SENSOR_ORIENTATION 
 ) 
 !! 
  
 if 
  
 ( 
 isFrontFacing 
 ) 
  
 { 
  
 rotationCompensation 
  
 = 
  
 ( 
 sensorOrientation 
  
 + 
  
 rotationCompensation 
 ) 
  
 % 
  
 360 
  
 } 
  
 else 
  
 { 
  
 // back-facing 
  
 rotationCompensation 
  
 = 
  
 ( 
 sensorOrientation 
  
 - 
  
 rotationCompensation 
  
 + 
  
 360 
 ) 
  
 % 
  
 360 
  
 } 
  
 return 
  
 rotationCompensation 
 } 
  

Java

 private 
  
 static 
  
 final 
  
 SparseIntArray 
  
 ORIENTATIONS 
  
 = 
  
 new 
  
 SparseIntArray 
 (); 
 static 
  
 { 
  
 ORIENTATIONS 
 . 
 append 
 ( 
 Surface 
 . 
 ROTATION_0 
 , 
  
 0 
 ); 
  
 ORIENTATIONS 
 . 
 append 
 ( 
 Surface 
 . 
 ROTATION_90 
 , 
  
 90 
 ); 
  
 ORIENTATIONS 
 . 
 append 
 ( 
 Surface 
 . 
 ROTATION_180 
 , 
  
 180 
 ); 
  
 ORIENTATIONS 
 . 
 append 
 ( 
 Surface 
 . 
 ROTATION_270 
 , 
  
 270 
 ); 
 } 
 /** 
 * Get the angle by which an image must be rotated given the device's current 
 * orientation. 
 */ 
 @RequiresApi 
 ( 
 api 
  
 = 
  
 Build 
 . 
 VERSION_CODES 
 . 
 LOLLIPOP 
 ) 
 private 
  
 int 
  
 getRotationCompensation 
 ( 
 String 
  
 cameraId 
 , 
  
 Activity 
  
 activity 
 , 
  
 boolean 
  
 isFrontFacing 
 ) 
  
 throws 
  
 CameraAccessException 
  
 { 
  
 // Get the device's current rotation relative to its "native" orientation. 
  
 // Then, from the ORIENTATIONS table, look up the angle the image must be 
  
 // rotated to compensate for the device's rotation. 
  
 int 
  
 deviceRotation 
  
 = 
  
 activity 
 . 
 getWindowManager 
 (). 
 getDefaultDisplay 
 (). 
 getRotation 
 (); 
  
 int 
  
 rotationCompensation 
  
 = 
  
 ORIENTATIONS 
 . 
 get 
 ( 
 deviceRotation 
 ); 
  
 // Get the device's sensor orientation. 
  
 CameraManager 
  
 cameraManager 
  
 = 
  
 ( 
 CameraManager 
 ) 
  
 activity 
 . 
 getSystemService 
 ( 
 CAMERA_SERVICE 
 ); 
  
 int 
  
 sensorOrientation 
  
 = 
  
 cameraManager 
  
 . 
 getCameraCharacteristics 
 ( 
 cameraId 
 ) 
  
 . 
 get 
 ( 
 CameraCharacteristics 
 . 
 SENSOR_ORIENTATION 
 ); 
  
 if 
  
 ( 
 isFrontFacing 
 ) 
  
 { 
  
 rotationCompensation 
  
 = 
  
 ( 
 sensorOrientation 
  
 + 
  
 rotationCompensation 
 ) 
  
 % 
  
 360 
 ; 
  
 } 
  
 else 
  
 { 
  
 // back-facing 
  
 rotationCompensation 
  
 = 
  
 ( 
 sensorOrientation 
  
 - 
  
 rotationCompensation 
  
 + 
  
 360 
 ) 
  
 % 
  
 360 
 ; 
  
 } 
  
 return 
  
 rotationCompensation 
 ; 
 } 

Then, pass the media.Image object and the rotation degree value to InputImage.fromMediaImage() :

Kotlin

 val 
  
 image 
  
 = 
  
 InputImage 
 . 
 fromMediaImage 
 ( 
 mediaImage 
 , 
  
 rotation 
 ) 
  

Java

 InputImage 
  
 image 
  
 = 
  
 InputImage 
 . 
 fromMediaImage 
 ( 
 mediaImage 
 , 
  
 rotation 
 ); 

Using a file URI

To create an InputImage object from a file URI, pass the app context and file URI to InputImage.fromFilePath() . This is useful when you use an ACTION_GET_CONTENT intent to prompt the user to select an image from their gallery app.

Kotlin

 val 
  
 image 
 : 
  
 InputImage 
 try 
  
 { 
  
 image 
  
 = 
  
 InputImage 
 . 
 fromFilePath 
 ( 
 context 
 , 
  
 uri 
 ) 
 } 
  
 catch 
  
 ( 
 e 
 : 
  
 IOException 
 ) 
  
 { 
  
 e 
 . 
 printStackTrace 
 () 
 } 
  

Java

 InputImage 
  
 image 
 ; 
 try 
  
 { 
  
 image 
  
 = 
  
 InputImage 
 . 
 fromFilePath 
 ( 
 context 
 , 
  
 uri 
 ); 
 } 
  
 catch 
  
 ( 
 IOException 
  
 e 
 ) 
  
 { 
  
 e 
 . 
 printStackTrace 
 (); 
 } 

Using a ByteBuffer or ByteArray

To create an InputImage object from a ByteBuffer or a ByteArray , first calculate the image rotation degree as previously described for media.Image input. Then, create the InputImage object with the buffer or array, together with image's height, width, color encoding format, and rotation degree:

Kotlin

 val 
  
 image 
  
 = 
  
 InputImage 
 . 
 fromByteBuffer 
 ( 
  
 byteBuffer 
 , 
  
 /* image width */ 
  
 480 
 , 
  
 /* image height */ 
  
 360 
 , 
  
 rotationDegrees 
 , 
  
 InputImage 
 . 
 IMAGE_FORMAT_NV21 
  
 // or IMAGE_FORMAT_YV12 
 ) 
  
 // Or: 
 val 
  
 image 
  
 = 
  
 InputImage 
 . 
 fromByteArray 
 ( 
  
 byteArray 
 , 
  
 /* image width */ 
  
 480 
 , 
  
 /* image height */ 
  
 360 
 , 
  
 rotationDegrees 
 , 
  
 InputImage 
 . 
 IMAGE_FORMAT_NV21 
  
 // or IMAGE_FORMAT_YV12 
 ) 
  

Java

 InputImage 
  
 image 
  
 = 
  
 InputImage 
 . 
 fromByteBuffer 
 ( 
 byteBuffer 
 , 
  
 /* image width */ 
  
 480 
 , 
  
 /* image height */ 
  
 360 
 , 
  
 rotationDegrees 
 , 
  
 InputImage 
 . 
 IMAGE_FORMAT_NV21 
  
 // or IMAGE_FORMAT_YV12 
 ); 
  
 // Or: 
 InputImage 
  
 image 
  
 = 
  
 InputImage 
 . 
 fromByteArray 
 ( 
  
 byteArray 
 , 
  
 /* image width */ 
 480 
 , 
  
 /* image height */ 
 360 
 , 
  
 rotation 
 , 
  
 InputImage 
 . 
 IMAGE_FORMAT_NV21 
  
 // or IMAGE_FORMAT_YV12 
 ); 
  

Using a Bitmap

To create an InputImage object from a Bitmap object, make the following declaration:

Kotlin

 val 
  
 image 
  
 = 
  
 InputImage 
 . 
 fromBitmap 
 ( 
 bitmap 
 , 
  
 0 
 ) 
  

Java

 InputImage 
  
 image 
  
 = 
  
 InputImage 
 . 
 fromBitmap 
 ( 
 bitmap 
 , 
  
 rotationDegree 
 ); 
  

The image is represented by a Bitmap object together with rotation degrees.

3. Process the image

Pass the image to the process() method:

Kotlin

 objectDetector 
 . 
 process 
 ( 
 image 
 ) 
  
 . 
 addOnSuccessListener 
  
 { 
  
 detectedObjects 
  
 -> 
  
 // Task completed successfully 
  
 // ... 
  
 } 
  
 . 
 addOnFailureListener 
  
 { 
  
 e 
  
 -> 
  
 // Task failed with an exception 
  
 // ... 
  
 } 

Java

 objectDetector 
 . 
 process 
 ( 
 image 
 ) 
  
 . 
 addOnSuccessListener 
 ( 
  
 new 
  
 OnSuccessListener<List<DetectedObject> 
> () 
  
 { 
  
 @Override 
  
 public 
  
 void 
  
 onSuccess 
 ( 
 List<DetectedObject> 
  
 detectedObjects 
 ) 
  
 { 
  
 // Task completed successfully 
  
 // ... 
  
 } 
  
 }) 
  
 . 
 addOnFailureListener 
 ( 
  
 new 
  
 OnFailureListener 
 () 
  
 { 
  
 @Override 
  
 public 
  
 void 
  
 onFailure 
 ( 
 @NonNull 
  
 Exception 
  
 e 
 ) 
  
 { 
  
 // Task failed with an exception 
  
 // ... 
  
 } 
  
 }); 

4. Get information about detected objects

If the call to process() succeeds, a list of DetectedObject s is passed to the success listener.

Each DetectedObject contains the following properties:

Bounding box
A Rect that indicates the position of the object in the image.
Tracking ID
An integer that identifies the object across images. Null in SINGLE_IMAGE_MODE.
Labels
Label description The label's text description. It will be one of the String constants defined in PredefinedCategory .
Label index The label's index among all the labels supported by the classifier. It will be one of the integer constants defined in PredefinedCategory .
Label confidence The confidence value of the object classification.

Kotlin

 for 
  
 ( 
 detectedObject 
  
 in 
  
 detectedObjects 
 ) 
  
 { 
  
 val 
  
 boundingBox 
  
 = 
  
 detectedObject 
 . 
 boundingBox 
  
 val 
  
 trackingId 
  
 = 
  
 detectedObject 
 . 
 trackingId 
  
 for 
  
 ( 
 label 
  
 in 
  
 detectedObject 
 . 
 labels 
 ) 
  
 { 
  
 val 
  
 text 
  
 = 
  
 label 
 . 
 text 
  
 if 
  
 ( 
 PredefinedCategory 
 . 
 FOOD 
  
 == 
  
 text 
 ) 
  
 { 
  
 ... 
  
 } 
  
 val 
  
 index 
  
 = 
  
 label 
 . 
 index 
  
 if 
  
 ( 
 PredefinedCategory 
 . 
 FOOD_INDEX 
  
 == 
  
 index 
 ) 
  
 { 
  
 ... 
  
 } 
  
 val 
  
 confidence 
  
 = 
  
 label 
 . 
 confidence 
  
 } 
 } 

Java

 // The list of detected objects contains one item if multiple 
 // object detection wasn't enabled. 
 for 
  
 ( 
 DetectedObject 
  
 detectedObject 
  
 : 
  
 detectedObjects 
 ) 
  
 { 
  
 Rect 
  
 boundingBox 
  
 = 
  
 detectedObject 
 . 
 getBoundingBox 
 (); 
  
 Integer 
  
 trackingId 
  
 = 
  
 detectedObject 
 . 
 getTrackingId 
 (); 
  
 for 
  
 ( 
 Label 
  
 label 
  
 : 
  
 detectedObject 
 . 
 getLabels 
 ()) 
  
 { 
  
 String 
  
 text 
  
 = 
  
 label 
 . 
 getText 
 (); 
  
 if 
  
 ( 
 PredefinedCategory 
 . 
 FOOD 
 . 
 equals 
 ( 
 text 
 )) 
  
 { 
  
 ... 
  
 } 
  
 int 
  
 index 
  
 = 
  
 label 
 . 
 getIndex 
 (); 
  
 if 
  
 ( 
 PredefinedCategory 
 . 
 FOOD_INDEX 
  
 == 
  
 index 
 ) 
  
 { 
  
 ... 
  
 } 
  
 float 
  
 confidence 
  
 = 
  
 label 
 . 
 getConfidence 
 (); 
  
 } 
 } 

Ensuring a great user experience

For the best user experience, follow these guidelines in your app:

  • Successful object detection depends on the object's visual complexity. In order to be detected, objects with a small number of visual features might need to take up a larger part of the image. You should provide users with guidance on capturing input that works well with the kind of objects you want to detect.
  • When you use classification, if you want to detect objects that don't fall cleanly into the supported categories, implement special handling for unknown objects.

Also, check out the ML Kit Material Design showcase app and the Material Design Patterns for machine learning-powered features collection.

Improving performance

If you want to use object detection in a real-time application, follow these guidelines to achieve the best framerates:

  • When you use streaming mode in a real-time application, don't use multiple object detection, as most devices won't be able to produce adequate framerates.

  • Disable classification if you don't need it.

  • If you use the Camera or camera2 API, throttle calls to the detector. If a new video frame becomes available while the detector is running, drop the frame. See the VisionProcessorBase class in the quickstart sample app for an example.
  • If you use the CameraX API, be sure that backpressure strategy is set to its default value ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST . This guarantees only one image will be delivered for analysis at a time. If more images are produced when the analyzer is busy, they will be dropped automatically and not queued for delivery. Once the image being analyzed is closed by calling ImageProxy.close(), the next latest image will be delivered.
  • If you use the output of the detector to overlay graphics on the input image, first get the result from ML Kit, then render the image and overlay in a single step. This renders to the display surface only once for each input frame. See the CameraSourcePreview and GraphicOverlay classes in the quickstart sample app for an example.
  • If you use the Camera2 API, capture images in ImageFormat.YUV_420_888 format. If you use the older Camera API, capture images in ImageFormat.NV21 format.
Design a Mobile Site
View Site in Mobile | Classic
Share by: