Computing k-map for a dataset

K-map is very similar to k -anonymity, except that it assumes that the attacker most likely doesn't know who is in the dataset. Use k -map if your dataset is relatively small, or if the level of effort involved in generalizing attributes would be too high.

Just like k -anonymity, k -map requires you to determine which columns of your database are quasi-identifiers. In doing this, you are stating what data an attacker will most likely use to re-identify subjects. In addition, computing a k -map value requires a re-identification dataset: a larger table with which to compare rows in the original dataset.

This topic demonstrates how to compute k -map values for a dataset using Sensitive Data Protection. For more information about k -map or risk analysis in general, see the risk analysis concept topic before continuing on.

Before you begin

Before continuing, be sure you've done the following:

  1. Sign in to your Google Account.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
  3. Go to the project selector
  4. Make sure that billing is enabled for your Google Cloud project. Learn how to confirm billing is enabled for your project.
  5. Enable Sensitive Data Protection.
  6. Enable Sensitive Data Protection
  7. Select a BigQuery dataset to analyze. Sensitive Data Protection estimates the k -map metric by scanning a BigQuery table.
  8. Determine the types of datasets you want to use to model the attack dataset. For more information, see the reference page for the KMapEstimationConfig object, as well as Risk analysis terms and techniques .

Compute k -map estimates

You can estimate k -map values using Sensitive Data Protection, which uses a statistical model to estimate a re-identification dataset. This is in contrast to the other risk analysis methods, in which the attack dataset is explicitly known. Depending on the type of data, Sensitive Data Protection uses publicly available datasets (for example, from the US Census) or a custom statistical model (for example, one or more BigQuery tables that you specify), or it extrapolates from the distribution of values in your input dataset. For more information, see the reference page for the KMapEstimationConfig object.

To compute a k -map estimate using Sensitive Data Protection, first configure the risk job. Compose a request to the projects.dlpJobs resource, where PROJECT_ID indicates your project identifier :

https://dlp.googleapis.com/v2/projects/ PROJECT_ID 
/dlpJobs

The request contains a RiskAnalysisJobConfig object, which is composed of the following:

  • A PrivacyMetric object. This is where you specify that you want to calculate k -map by specifying a KMapEstimationConfig object containing the following:

    • quasiIds[] : Required. Fields ( TaggedField objects) considered to be quasi-identifiers to scan and use to compute k -map. No two columns can have the same tag. These can be any of the following:

      • An infoType : This causes Sensitive Data Protection to use the relevant public dataset as a statistical model of population, including US ZIP codes, region codes, ages, and genders.
      • A custom infoType: A custom tag wherein you indicate an auxiliary table (an AuxiliaryTable object) that contains statistical information about the possible values of this column.
      • The inferred tag: If no semantic tag is indicated, specify inferred . Sensitive Data Protection infers the statistical model from the distribution of values in the input data.
    • regionCode : An ISO 3166-1 alpha-2 region code for Sensitive Data Protection to use in statistical modeling. This value is required if no column is tagged with a region-specific infoType (for example, a US ZIP code) or a region code.

    • auxiliaryTables[] : Auxiliary tables ( AuxiliaryTable objects) to use in the analysis. Each custom tag used to tag a quasi-identifier column (from quasiIds[] ) must appear in exactly one column of one auxiliary table.

  • A BigQueryTable object. Specify the BigQuery table to scan by including all of the following:

    • projectId : The project ID of the project containing the table.
    • datasetId : The dataset ID of the table.
    • tableId : The name of the table.
  • A set of one or more Action objects, which represent actions to run, in the order given, at the completion of the job. Each Action object can contain one of the following actions:

Code examples

Following is sample code in several languages that demonstrates how to use Sensitive Data Protection to compute a k -map value.

Go

To learn how to install and use the client library for Sensitive Data Protection, see Sensitive Data Protection client libraries .

To authenticate to Sensitive Data Protection, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  import 
  
 ( 
  
 "context" 
  
 "fmt" 
  
 "io" 
  
 "strings" 
  
 "time" 
  
 dlp 
  
 "cloud.google.com/go/dlp/apiv2" 
  
 "cloud.google.com/go/dlp/apiv2/dlppb" 
  
 "cloud.google.com/go/pubsub" 
  
 "github.com/golang/protobuf/ptypes/empty" 
 ) 
 // riskKMap runs K Map on the given data. 
 func 
  
 riskKMap 
 ( 
 w 
  
 io 
 . 
 Writer 
 , 
  
 projectID 
 , 
  
 dataProject 
 , 
  
 pubSubTopic 
 , 
  
 pubSubSub 
 , 
  
 datasetID 
 , 
  
 tableID 
 , 
  
 region 
  
 string 
 , 
  
 columnNames 
  
 ... 
 string 
 ) 
  
 error 
  
 { 
  
 // projectID := "my-project-id" 
  
 // dataProject := "bigquery-public-data" 
  
 // pubSubTopic := "dlp-risk-sample-topic" 
  
 // pubSubSub := "dlp-risk-sample-sub" 
  
 // datasetID := "san_francisco" 
  
 // tableID := "bikeshare_trips" 
  
 // region := "US" 
  
 // columnNames := "zip_code" 
  
 ctx 
  
 := 
  
 context 
 . 
 Background 
 () 
  
 client 
 , 
  
 err 
  
 := 
  
 dlp 
 . 
 NewClient 
 ( 
 ctx 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 return 
  
 fmt 
 . 
 Errorf 
 ( 
 "dlp.NewClient: %w" 
 , 
  
 err 
 ) 
  
 } 
  
 // Create a PubSub Client used to listen for when the inspect job finishes. 
  
 pubsubClient 
 , 
  
 err 
  
 := 
  
 pubsub 
 . 
 NewClient 
 ( 
 ctx 
 , 
  
 projectID 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 return 
  
 err 
  
 } 
  
 defer 
  
 pubsubClient 
 . 
 Close 
 () 
  
 // Create a PubSub subscription we can use to listen for messages. 
  
 // Create the Topic if it doesn't exist. 
  
 t 
  
 := 
  
 pubsubClient 
 . 
 Topic 
 ( 
 pubSubTopic 
 ) 
  
 topicExists 
 , 
  
 err 
  
 := 
  
 t 
 . 
 Exists 
 ( 
 ctx 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 return 
  
 err 
  
 } 
  
 if 
  
 ! 
 topicExists 
  
 { 
  
 if 
  
 t 
 , 
  
 err 
  
 = 
  
 pubsubClient 
 . 
 CreateTopic 
 ( 
 ctx 
 , 
  
 pubSubTopic 
 ); 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 return 
  
 err 
  
 } 
  
 } 
  
 // Create the Subscription if it doesn't exist. 
  
 s 
  
 := 
  
 pubsubClient 
 . 
 Subscription 
 ( 
 pubSubSub 
 ) 
  
 subExists 
 , 
  
 err 
  
 := 
  
 s 
 . 
 Exists 
 ( 
 ctx 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 return 
  
 err 
  
 } 
  
 if 
  
 ! 
 subExists 
  
 { 
  
 if 
  
 s 
 , 
  
 err 
  
 = 
  
 pubsubClient 
 . 
 CreateSubscription 
 ( 
 ctx 
 , 
  
 pubSubSub 
 , 
  
 pubsub 
 . 
 SubscriptionConfig 
 { 
 Topic 
 : 
  
 t 
 }); 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 return 
  
 err 
  
 } 
  
 } 
  
 // topic is the PubSub topic string where messages should be sent. 
  
 topic 
  
 := 
  
 "projects/" 
  
 + 
  
 projectID 
  
 + 
  
 "/topics/" 
  
 + 
  
 pubSubTopic 
  
 // Build the QuasiID slice. 
  
 var 
  
 q 
  
 [] 
 * 
 dlppb 
 . 
 PrivacyMetric_KMapEstimationConfig_TaggedField 
  
 for 
  
 _ 
 , 
  
 c 
  
 := 
  
 range 
  
 columnNames 
  
 { 
  
 q 
  
 = 
  
 append 
 ( 
 q 
 , 
  
& dlppb 
 . 
 PrivacyMetric_KMapEstimationConfig_TaggedField 
 { 
  
 Field 
 : 
  
& dlppb 
 . 
 FieldId 
 { 
  
 Name 
 : 
  
 c 
 , 
  
 }, 
  
 Tag 
 : 
  
& dlppb 
 . 
 PrivacyMetric_KMapEstimationConfig_TaggedField_Inferred 
 { 
  
 Inferred 
 : 
  
& empty 
 . 
 Empty 
 {}, 
  
 }, 
  
 }) 
  
 } 
  
 // Create a configured request. 
  
 req 
  
 := 
  
& dlppb 
 . 
 CreateDlpJobRequest 
 { 
  
 Parent 
 : 
  
 fmt 
 . 
 Sprintf 
 ( 
 "projects/%s/locations/global" 
 , 
  
 projectID 
 ), 
  
 Job 
 : 
  
& dlppb 
 . 
 CreateDlpJobRequest_RiskJob 
 { 
  
 RiskJob 
 : 
  
& dlppb 
 . 
 RiskAnalysisJobConfig 
 { 
  
 // PrivacyMetric configures what to compute. 
  
 PrivacyMetric 
 : 
  
& dlppb 
 . 
 PrivacyMetric 
 { 
  
 Type 
 : 
  
& dlppb 
 . 
 PrivacyMetric_KMapEstimationConfig_ 
 { 
  
 KMapEstimationConfig 
 : 
  
& dlppb 
 . 
 PrivacyMetric_KMapEstimationConfig 
 { 
  
 QuasiIds 
 : 
  
 q 
 , 
  
 RegionCode 
 : 
  
 region 
 , 
  
 }, 
  
 }, 
  
 }, 
  
 // SourceTable describes where to find the data. 
  
 SourceTable 
 : 
  
& dlppb 
 . 
 BigQueryTable 
 { 
  
 ProjectId 
 : 
  
 dataProject 
 , 
  
 DatasetId 
 : 
  
 datasetID 
 , 
  
 TableId 
 : 
  
 tableID 
 , 
  
 }, 
  
 // Send a message to PubSub using Actions. 
  
 Actions 
 : 
  
 [] 
 * 
 dlppb 
 . 
 Action 
 { 
  
 { 
  
 Action 
 : 
  
& dlppb 
 . 
 Action_PubSub 
 { 
  
 PubSub 
 : 
  
& dlppb 
 . 
 Action_PublishToPubSub 
 { 
  
 Topic 
 : 
  
 topic 
 , 
  
 }, 
  
 }, 
  
 }, 
  
 }, 
  
 }, 
  
 }, 
  
 } 
  
 // Create the risk job. 
  
 j 
 , 
  
 err 
  
 := 
  
 client 
 . 
 CreateDlpJob 
 ( 
 ctx 
 , 
  
 req 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 return 
  
 fmt 
 . 
 Errorf 
 ( 
 "CreateDlpJob: %w" 
 , 
  
 err 
 ) 
  
 } 
  
 fmt 
 . 
 Fprintf 
 ( 
 w 
 , 
  
 "Created job: %v\n" 
 , 
  
 j 
 . 
 GetName 
 ()) 
  
 // Wait for the risk job to finish by waiting for a PubSub message. 
  
 // This only waits for 10 minutes. For long jobs, consider using a truly 
  
 // asynchronous execution model such as Cloud Functions. 
  
 ctx 
 , 
  
 cancel 
  
 := 
  
 context 
 . 
 WithTimeout 
 ( 
 ctx 
 , 
  
 10 
 * 
 time 
 . 
 Minute 
 ) 
  
 defer 
  
 cancel 
 () 
  
 err 
  
 = 
  
 s 
 . 
 Receive 
 ( 
 ctx 
 , 
  
 func 
 ( 
 ctx 
  
 context 
 . 
 Context 
 , 
  
 msg 
  
 * 
 pubsub 
 . 
 Message 
 ) 
  
 { 
  
 // If this is the wrong job, do not process the result. 
  
 if 
  
 msg 
 . 
 Attributes 
 [ 
 "DlpJobName" 
 ] 
  
 != 
  
 j 
 . 
 GetName 
 () 
  
 { 
  
 msg 
 . 
 Nack 
 () 
  
 return 
  
 } 
  
 msg 
 . 
 Ack 
 () 
  
 time 
 . 
 Sleep 
 ( 
 500 
  
 * 
  
 time 
 . 
 Millisecond 
 ) 
  
 j 
 , 
  
 err 
  
 := 
  
 client 
 . 
 GetDlpJob 
 ( 
 ctx 
 , 
  
& dlppb 
 . 
 GetDlpJobRequest 
 { 
  
 Name 
 : 
  
 j 
 . 
 GetName 
 (), 
  
 }) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 fmt 
 . 
 Fprintf 
 ( 
 w 
 , 
  
 "GetDlpJob: %v" 
 , 
  
 err 
 ) 
  
 return 
  
 } 
  
 h 
  
 := 
  
 j 
 . 
 GetRiskDetails 
 (). 
 GetKMapEstimationResult 
 (). 
 GetKMapEstimationHistogram 
 () 
  
 for 
  
 i 
 , 
  
 b 
  
 := 
  
 range 
  
 h 
  
 { 
  
 fmt 
 . 
 Fprintf 
 ( 
 w 
 , 
  
 "Histogram bucket %v\n" 
 , 
  
 i 
 ) 
  
 fmt 
 . 
 Fprintf 
 ( 
 w 
 , 
  
 "  Anonymity range: [%v,%v]\n" 
 , 
  
 b 
 . 
 GetMaxAnonymity 
 (), 
  
 b 
 . 
 GetMaxAnonymity 
 ()) 
  
 fmt 
 . 
 Fprintf 
 ( 
 w 
 , 
  
 "  %v unique values total\n" 
 , 
  
 b 
 . 
 GetBucketSize 
 ()) 
  
 for 
  
 _ 
 , 
  
 v 
  
 := 
  
 range 
  
 b 
 . 
 GetBucketValues 
 () 
  
 { 
  
 var 
  
 qvs 
  
 [] 
 string 
  
 for 
  
 _ 
 , 
  
 qv 
  
 := 
  
 range 
  
 v 
 . 
 GetQuasiIdsValues 
 () 
  
 { 
  
 qvs 
  
 = 
  
 append 
 ( 
 qvs 
 , 
  
 qv 
 . 
 String 
 ()) 
  
 } 
  
 fmt 
 . 
 Fprintf 
 ( 
 w 
 , 
  
 "    QuasiID values: %s\n" 
 , 
  
 strings 
 . 
 Join 
 ( 
 qvs 
 , 
  
 ", " 
 )) 
  
 fmt 
 . 
 Fprintf 
 ( 
 w 
 , 
  
 "    Estimated anonymity: %v\n" 
 , 
  
 v 
 . 
 GetEstimatedAnonymity 
 ()) 
  
 } 
  
 } 
  
 // Stop listening for more messages. 
  
 cancel 
 () 
  
 }) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 return 
  
 fmt 
 . 
 Errorf 
 ( 
 "Recieve: %w" 
 , 
  
 err 
 ) 
  
 } 
  
 return 
  
 nil 
 } 
 

Java

To learn how to install and use the client library for Sensitive Data Protection, see Sensitive Data Protection client libraries .

To authenticate to Sensitive Data Protection, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  import 
  
 com.google.api.core. SettableApiFuture 
 
 ; 
 import 
  
 com.google.cloud.dlp.v2. DlpServiceClient 
 
 ; 
 import 
  
 com.google.cloud.pubsub.v1. AckReplyConsumer 
 
 ; 
 import 
  
 com.google.cloud.pubsub.v1. MessageReceiver 
 
 ; 
 import 
  
 com.google.cloud.pubsub.v1. Subscriber 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. Action 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. Action 
. PublishToPubSub 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. AnalyzeDataSourceRiskDetails 
. KMapEstimationResult 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. AnalyzeDataSourceRiskDetails 
. KMapEstimationResult 
. KMapEstimationHistogramBucket 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. AnalyzeDataSourceRiskDetails 
. KMapEstimationResult 
. KMapEstimationQuasiIdValues 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. BigQueryTable 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. CreateDlpJobRequest 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. DlpJob 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. FieldId 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. GetDlpJobRequest 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. InfoType 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. LocationName 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. PrivacyMetric 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. PrivacyMetric 
. KMapEstimationConfig 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. PrivacyMetric 
. KMapEstimationConfig 
. TaggedField 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. RiskAnalysisJobConfig 
 
 ; 
 import 
  
 com.google.pubsub.v1. ProjectSubscriptionName 
 
 ; 
 import 
  
 com.google.pubsub.v1. ProjectTopicName 
 
 ; 
 import 
  
 com.google.pubsub.v1. PubsubMessage 
 
 ; 
 import 
  
 java.io.IOException 
 ; 
 import 
  
 java.util.ArrayList 
 ; 
 import 
  
 java.util.Arrays 
 ; 
 import 
  
 java.util.List 
 ; 
 import 
  
 java.util.concurrent.ExecutionException 
 ; 
 import 
  
 java.util.concurrent.TimeUnit 
 ; 
 import 
  
 java.util.concurrent.TimeoutException 
 ; 
 import 
  
 java.util.stream.Collectors 
 ; 
 @SuppressWarnings 
 ( 
 "checkstyle:AbbreviationAsWordInName" 
 ) 
 class 
 RiskAnalysisKMap 
  
 { 
  
 public 
  
 static 
  
 void 
  
 main 
 ( 
 String 
 [] 
  
 args 
 ) 
  
 throws 
  
 Exception 
  
 { 
  
 // TODO(developer): Replace these variables before running the sample. 
  
 String 
  
 projectId 
  
 = 
  
 "your-project-id" 
 ; 
  
 String 
  
 datasetId 
  
 = 
  
 "your-bigquery-dataset-id" 
 ; 
  
 String 
  
 tableId 
  
 = 
  
 "your-bigquery-table-id" 
 ; 
  
 String 
  
 topicId 
  
 = 
  
 "pub-sub-topic" 
 ; 
  
 String 
  
 subscriptionId 
  
 = 
  
 "pub-sub-subscription" 
 ; 
  
 calculateKMap 
 ( 
 projectId 
 , 
  
 datasetId 
 , 
  
 tableId 
 , 
  
 topicId 
 , 
  
 subscriptionId 
 ); 
  
 } 
  
 public 
  
 static 
  
 void 
  
 calculateKMap 
 ( 
  
 String 
  
 projectId 
 , 
  
 String 
  
 datasetId 
 , 
  
 String 
  
 tableId 
 , 
  
 String 
  
 topicId 
 , 
  
 String 
  
 subscriptionId 
 ) 
  
 throws 
  
 ExecutionException 
 , 
  
 InterruptedException 
 , 
  
 IOException 
  
 { 
  
 // Initialize client that will be used to send requests. This client only needs to be created 
  
 // once, and can be reused for multiple requests. After completing all of your requests, call 
  
 // the "close" method on the client to safely clean up any remaining background resources. 
  
 try 
  
 ( 
  DlpServiceClient 
 
  
 dlpServiceClient 
  
 = 
  
  DlpServiceClient 
 
 . 
 create 
 ()) 
  
 { 
  
 // Specify the BigQuery table to analyze 
  
  BigQueryTable 
 
  
 bigQueryTable 
  
 = 
  
  BigQueryTable 
 
 . 
 newBuilder 
 () 
  
 . 
 setProjectId 
 ( 
 projectId 
 ) 
  
 . 
 setDatasetId 
 ( 
 datasetId 
 ) 
  
 . 
 setTableId 
 ( 
 tableId 
 ) 
  
 . 
 build 
 (); 
  
 // These values represent the column names of quasi-identifiers to analyze 
  
 List<String> 
  
 quasiIds 
  
 = 
  
 Arrays 
 . 
 asList 
 ( 
 "Age" 
 , 
  
 "Gender" 
 ); 
  
 // These values represent the info types corresponding to the quasi-identifiers above 
  
 List<String> 
  
 infoTypeNames 
  
 = 
  
 Arrays 
 . 
 asList 
 ( 
 "AGE" 
 , 
  
 "GENDER" 
 ); 
  
 // Tag each of the quasiId column names with its corresponding infoType 
  
 List<InfoType> 
  
 infoTypes 
  
 = 
  
 infoTypeNames 
 . 
 stream 
 () 
  
 . 
 map 
 ( 
 it 
  
 - 
>  
  InfoType 
 
 . 
 newBuilder 
 (). 
 setName 
 ( 
 it 
 ). 
 build 
 ()) 
  
 . 
 collect 
 ( 
 Collectors 
 . 
 toList 
 ()); 
  
 if 
  
 ( 
 quasiIds 
 . 
 size 
 () 
  
 != 
  
 infoTypes 
 . 
 size 
 ()) 
  
 { 
  
 throw 
  
 new 
  
 IllegalArgumentException 
 ( 
 "The numbers of quasi-IDs and infoTypes must be equal!" 
 ); 
  
 } 
  
 List<TaggedField> 
  
 taggedFields 
  
 = 
  
 new 
  
 ArrayList<TaggedField> 
 (); 
  
 for 
  
 ( 
 int 
  
 i 
  
 = 
  
 0 
 ; 
  
 i 
 < 
 quasiIds 
 . 
 size 
 (); 
  
 i 
 ++ 
 ) 
  
 { 
  
  TaggedField 
 
  
 taggedField 
  
 = 
  
  TaggedField 
 
 . 
 newBuilder 
 () 
  
 . 
 setField 
 ( 
  FieldId 
 
 . 
 newBuilder 
 (). 
 setName 
 ( 
 quasiIds 
 . 
 get 
 ( 
 i 
 )). 
 build 
 ()) 
  
 . 
 setInfoType 
 ( 
 infoTypes 
 . 
 get 
 ( 
 i 
 )) 
  
 . 
 build 
 (); 
  
 taggedFields 
 . 
 add 
 ( 
 taggedField 
 ); 
  
 } 
  
 // The k-map distribution region can be specified by any ISO-3166-1 region code. 
  
 String 
  
 regionCode 
  
 = 
  
 "US" 
 ; 
  
 // Configure the privacy metric for the job 
  
  KMapEstimationConfig 
 
  
 kmapConfig 
  
 = 
  
  KMapEstimationConfig 
 
 . 
 newBuilder 
 () 
  
 . 
 addAllQuasiIds 
 ( 
 taggedFields 
 ) 
  
 . 
 setRegionCode 
 ( 
 regionCode 
 ) 
  
 . 
 build 
 (); 
  
  PrivacyMetric 
 
  
 privacyMetric 
  
 = 
  
  PrivacyMetric 
 
 . 
 newBuilder 
 (). 
  setKMapEstimationConfig 
 
 ( 
 kmapConfig 
 ). 
 build 
 (); 
  
 // Create action to publish job status notifications over Google Cloud Pub/Sub 
  
  ProjectTopicName 
 
  
 topicName 
  
 = 
  
  ProjectTopicName 
 
 . 
 of 
 ( 
 projectId 
 , 
  
 topicId 
 ); 
  
  PublishToPubSub 
 
  
 publishToPubSub 
  
 = 
  
  PublishToPubSub 
 
 . 
 newBuilder 
 (). 
 setTopic 
 ( 
 topicName 
 . 
  toString 
 
 ()). 
 build 
 (); 
  
  Action 
 
  
 action 
  
 = 
  
  Action 
 
 . 
 newBuilder 
 (). 
  setPubSub 
 
 ( 
 publishToPubSub 
 ). 
 build 
 (); 
  
 // Configure the risk analysis job to perform 
  
  RiskAnalysisJobConfig 
 
  
 riskAnalysisJobConfig 
  
 = 
  
  RiskAnalysisJobConfig 
 
 . 
 newBuilder 
 () 
  
 . 
  setSourceTable 
 
 ( 
 bigQueryTable 
 ) 
  
 . 
  setPrivacyMetric 
 
 ( 
 privacyMetric 
 ) 
  
 . 
 addActions 
 ( 
 action 
 ) 
  
 . 
 build 
 (); 
  
 // Build the request to be sent by the client 
  
  CreateDlpJobRequest 
 
  
 createDlpJobRequest 
  
 = 
  
  CreateDlpJobRequest 
 
 . 
 newBuilder 
 () 
  
 . 
 setParent 
 ( 
  LocationName 
 
 . 
 of 
 ( 
 projectId 
 , 
  
 "global" 
 ). 
 toString 
 ()) 
  
 . 
  setRiskJob 
 
 ( 
 riskAnalysisJobConfig 
 ) 
  
 . 
 build 
 (); 
  
 // Send the request to the API using the client 
  
  DlpJob 
 
  
 dlpJob 
  
 = 
  
 dlpServiceClient 
 . 
 createDlpJob 
 ( 
 createDlpJobRequest 
 ); 
  
 // Set up a Pub/Sub subscriber to listen on the job completion status 
  
 final 
  
 SettableApiFuture<Boolean> 
  
 done 
  
 = 
  
  SettableApiFuture 
 
 . 
 create 
 (); 
  
  ProjectSubscriptionName 
 
  
 subscriptionName 
  
 = 
  
  ProjectSubscriptionName 
 
 . 
 of 
 ( 
 projectId 
 , 
  
 subscriptionId 
 ); 
  
  MessageReceiver 
 
  
 messageHandler 
  
 = 
  
 ( 
 PubsubMessage 
  
 pubsubMessage 
 , 
  
 AckReplyConsumer 
  
 ackReplyConsumer 
 ) 
  
 - 
>  
 { 
  
 handleMessage 
 ( 
 dlpJob 
 , 
  
 done 
 , 
  
 pubsubMessage 
 , 
  
 ackReplyConsumer 
 ); 
  
 }; 
  
  Subscriber 
 
  
 subscriber 
  
 = 
  
  Subscriber 
 
 . 
 newBuilder 
 ( 
 subscriptionName 
 , 
  
 messageHandler 
 ). 
 build 
 (); 
  
 subscriber 
 . 
  startAsync 
 
 (); 
  
 // Wait for job completion semi-synchronously 
  
 // For long jobs, consider using a truly asynchronous execution model such as Cloud Functions 
  
 try 
  
 { 
  
 done 
 . 
 get 
 ( 
 15 
 , 
  
 TimeUnit 
 . 
 MINUTES 
 ); 
  
 } 
  
 catch 
  
 ( 
 TimeoutException 
  
 e 
 ) 
  
 { 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "Job was not completed after 15 minutes." 
 ); 
  
 return 
 ; 
  
 } 
  
 finally 
  
 { 
  
 subscriber 
 . 
 stopAsync 
 (); 
  
 subscriber 
 . 
 awaitTerminated 
 (); 
  
 } 
  
 // Build a request to get the completed job 
  
  GetDlpJobRequest 
 
  
 getDlpJobRequest 
  
 = 
  
  GetDlpJobRequest 
 
 . 
 newBuilder 
 (). 
 setName 
 ( 
 dlpJob 
 . 
  getName 
 
 ()). 
 build 
 (); 
  
 // Retrieve completed job status 
  
  DlpJob 
 
  
 completedJob 
  
 = 
  
 dlpServiceClient 
 . 
 getDlpJob 
 ( 
 getDlpJobRequest 
 ); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "Job status: " 
  
 + 
  
 completedJob 
 . 
  getState 
 
 ()); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "Job name: " 
  
 + 
  
 dlpJob 
 . 
  getName 
 
 ()); 
  
 // Get the result and parse through and process the information 
  
  KMapEstimationResult 
 
  
 kmapResult 
  
 = 
  
 completedJob 
 . 
  getRiskDetails 
 
 (). 
 getKMapEstimationResult 
 (); 
  
 for 
  
 ( 
  KMapEstimationHistogramBucket 
 
  
 result 
  
 : 
  
 kmapResult 
 . 
 getKMapEstimationHistogramList 
 ()) 
  
 { 
  
 System 
 . 
 out 
 . 
 printf 
 ( 
  
 "\tAnonymity range: [%d, %d]\n" 
 , 
  
 result 
 . 
 getMinAnonymity 
 (), 
  
 result 
 . 
 getMaxAnonymity 
 ()); 
  
 System 
 . 
 out 
 . 
 printf 
 ( 
 "\tSize: %d\n" 
 , 
  
 result 
 . 
 getBucketSize 
 ()); 
  
 for 
  
 ( 
  KMapEstimationQuasiIdValues 
 
  
 valueBucket 
  
 : 
  
 result 
 . 
 getBucketValuesList 
 ()) 
  
 { 
  
 List<String> 
  
 quasiIdValues 
  
 = 
  
 valueBucket 
 . 
 getQuasiIdsValuesList 
 (). 
 stream 
 () 
  
 . 
 map 
 ( 
  
 value 
  
 - 
>  
 { 
  
 String 
  
 s 
  
 = 
  
 value 
 . 
 toString 
 (); 
  
 return 
  
 s 
 . 
 substring 
 ( 
 s 
 . 
 indexOf 
 ( 
 ':' 
 ) 
  
 + 
  
 1 
 ). 
 trim 
 (); 
  
 }) 
  
 . 
 collect 
 ( 
 Collectors 
 . 
 toList 
 ()); 
  
 System 
 . 
 out 
 . 
 printf 
 ( 
 "\tValues: {%s}\n" 
 , 
  
 String 
 . 
 join 
 ( 
 ", " 
 , 
  
 quasiIdValues 
 )); 
  
 System 
 . 
 out 
 . 
 printf 
 ( 
  
 "\tEstimated k-map anonymity: %d\n" 
 , 
  
 valueBucket 
 . 
 getEstimatedAnonymity 
 ()); 
  
 } 
  
 } 
  
 } 
  
 } 
  
 // handleMessage injects the job and settableFuture into the message reciever interface 
  
 private 
  
 static 
  
 void 
  
 handleMessage 
 ( 
  
  DlpJob 
 
  
 job 
 , 
  
 SettableApiFuture<Boolean> 
  
 done 
 , 
  
  PubsubMessage 
 
  
 pubsubMessage 
 , 
  
  AckReplyConsumer 
 
  
 ackReplyConsumer 
 ) 
  
 { 
  
 String 
  
 messageAttribute 
  
 = 
  
 pubsubMessage 
 . 
  getAttributesMap 
 
 (). 
 get 
 ( 
 "DlpJobName" 
 ); 
  
 if 
  
 ( 
 job 
 . 
  getName 
 
 (). 
 equals 
 ( 
 messageAttribute 
 )) 
  
 { 
  
 done 
 . 
 set 
 ( 
 true 
 ); 
  
  ack 
 
ReplyConsumer . 
  ack 
 
 (); 
  
 } 
  
 else 
  
 { 
  
 ackReplyConsumer 
 . 
  nack 
 
 (); 
  
 } 
  
 } 
 } 
 

Node.js

To learn how to install and use the client library for Sensitive Data Protection, see Sensitive Data Protection client libraries .

To authenticate to Sensitive Data Protection, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  // Import the Google Cloud client libraries 
 const 
  
 DLP 
  
 = 
  
 require 
 ( 
 ' @google-cloud/dlp 
' 
 ); 
 const 
  
 { 
 PubSub 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/pubsub 
' 
 ); 
 // Instantiates clients 
 const 
  
 dlp 
  
 = 
  
 new 
  
 DLP 
 . 
  DlpServiceClient 
 
 (); 
 const 
  
 pubsub 
  
 = 
  
 new 
  
  PubSub 
 
 (); 
 // The project ID to run the API call under 
 // const projectId = 'my-project'; 
 // The project ID the table is stored under 
 // This may or (for public datasets) may not equal the calling project ID 
 // const tableProjectId = 'my-project'; 
 // The ID of the dataset to inspect, e.g. 'my_dataset' 
 // const datasetId = 'my_dataset'; 
 // The ID of the table to inspect, e.g. 'my_table' 
 // const tableId = 'my_table'; 
 // The name of the Pub/Sub topic to notify once the job completes 
 // TODO(developer): create a Pub/Sub topic to use for this 
 // const topicId = 'MY-PUBSUB-TOPIC' 
 // The name of the Pub/Sub subscription to use when listening for job 
 // completion notifications 
 // TODO(developer): create a Pub/Sub subscription to use for this 
 // const subscriptionId = 'MY-PUBSUB-SUBSCRIPTION' 
 // The ISO 3166-1 region code that the data is representative of 
 // Can be omitted if using a region-specific infoType (such as US_ZIP_5) 
 // const regionCode = 'USA'; 
 // A set of columns that form a composite key ('quasi-identifiers'), and 
 // optionally their reidentification distributions 
 // const quasiIds = [{ field: { name: 'age' }, infoType: { name: 'AGE' }}]; 
 async 
  
 function 
  
 kMapEstimationAnalysis 
 () 
  
 { 
  
 const 
  
 sourceTable 
  
 = 
  
 { 
  
 projectId 
 : 
  
 tableProjectId 
 , 
  
 datasetId 
 : 
  
 datasetId 
 , 
  
 tableId 
 : 
  
 tableId 
 , 
  
 }; 
  
 // Construct request for creating a risk analysis job 
  
 const 
  
 request 
  
 = 
  
 { 
  
 parent 
 : 
  
 `projects/ 
 ${ 
 projectId 
 } 
 /locations/global` 
 , 
  
 riskJob 
 : 
  
 { 
  
 privacyMetric 
 : 
  
 { 
  
 kMapEstimationConfig 
 : 
  
 { 
  
 quasiIds 
 : 
  
 quasiIds 
 , 
  
 regionCode 
 : 
  
 regionCode 
 , 
  
 }, 
  
 }, 
  
 sourceTable 
 : 
  
 sourceTable 
 , 
  
 actions 
 : 
  
 [ 
  
 { 
  
 pubSub 
 : 
  
 { 
  
 topic 
 : 
  
 `projects/ 
 ${ 
 projectId 
 } 
 /topics/ 
 ${ 
 topicId 
 } 
 ` 
 , 
  
 }, 
  
 }, 
  
 ], 
  
 }, 
  
 }; 
  
 // Create helper function for unpacking values 
  
 const 
  
 getValue 
  
 = 
  
 obj 
  
 = 
>  
 obj 
 [ 
 Object 
 . 
 keys 
 ( 
 obj 
 )[ 
 0 
 ]]; 
  
 // Run risk analysis job 
  
 const 
  
 [ 
 topicResponse 
 ] 
  
 = 
  
 await 
  
 pubsub 
 . 
 topic 
 ( 
 topicId 
 ). 
 get 
 (); 
  
 const 
  
 subscription 
  
 = 
  
 await 
  
 topicResponse 
 . 
 subscription 
 ( 
 subscriptionId 
 ); 
  
 const 
  
 [ 
 jobsResponse 
 ] 
  
 = 
  
 await 
  
 dlp 
 . 
 createDlpJob 
 ( 
 request 
 ); 
  
 const 
  
 jobName 
  
 = 
  
 jobsResponse 
 . 
 name 
 ; 
  
 console 
 . 
 log 
 ( 
 `Job created. Job name: 
 ${ 
 jobName 
 } 
 ` 
 ); 
  
 // Watch the Pub/Sub topic until the DLP job finishes 
  
 await 
  
 new 
  
  Promise 
 
 (( 
 resolve 
 , 
  
 reject 
 ) 
  
 = 
>  
 { 
  
 const 
  
 messageHandler 
  
 = 
  
 message 
  
 = 
>  
 { 
  
 if 
  
 ( 
 message 
 . 
 attributes 
 && 
 message 
 . 
 attributes 
 . 
 DlpJobName 
  
 === 
  
 jobName 
 ) 
  
 { 
  
 message 
 . 
 ack 
 (); 
  
 subscription 
 . 
 removeListener 
 ( 
 'message' 
 , 
  
 messageHandler 
 ); 
  
 subscription 
 . 
 removeListener 
 ( 
 'error' 
 , 
  
 errorHandler 
 ); 
  
 resolve 
 ( 
 jobName 
 ); 
  
 } 
  
 else 
  
 { 
  
 message 
 . 
 nack 
 (); 
  
 } 
  
 }; 
  
 const 
  
 errorHandler 
  
 = 
  
 err 
  
 = 
>  
 { 
  
 subscription 
 . 
 removeListener 
 ( 
 'message' 
 , 
  
 messageHandler 
 ); 
  
 subscription 
 . 
 removeListener 
 ( 
 'error' 
 , 
  
 errorHandler 
 ); 
  
 reject 
 ( 
 err 
 ); 
  
 }; 
  
 subscripti on 
 
 . 
  on 
 
 ( 
 'message' 
 , 
  
 messageHandler 
 ); 
  
 subscripti on 
 
 . 
  on 
 
 ( 
 'error' 
 , 
  
 errorHandler 
 ); 
  
 }); 
  
 setTimeout 
 (() 
  
 = 
>  
 { 
  
 console 
 . 
 log 
 ( 
 ' Waiting for DLP job to fully complete' 
 ); 
  
 }, 
  
 500 
 ); 
  
 const 
  
 [ 
 job 
 ] 
  
 = 
  
 await 
  
 dlp 
 . 
 getDlpJob 
 ({ 
 name 
 : 
  
 jobName 
 }); 
  
 const 
  
 histogramBuckets 
  
 = 
  
 job 
 . 
 riskDetails 
 . 
 kMapEstimationResult 
 . 
 kMapEstimationHistogram 
 ; 
  
 histogramBuckets 
 . 
 forEach 
 (( 
 histogramBucket 
 , 
  
 histogramBucketIdx 
 ) 
  
 = 
>  
 { 
  
 console 
 . 
 log 
 ( 
 `Bucket 
 ${ 
 histogramBucketIdx 
 } 
 :` 
 ); 
  
 console 
 . 
 log 
 ( 
  
 `  Anonymity range: [ 
 ${ 
 histogramBucket 
 . 
 minAnonymity 
 } 
 , 
 ${ 
 histogramBucket 
 . 
 maxAnonymity 
 } 
 ]` 
  
 ); 
  
 console 
 . 
 log 
 ( 
 `  Size: 
 ${ 
 histogramBucket 
 . 
 bucketSize 
 } 
 ` 
 ); 
  
 histogramBucket 
 . 
 bucketValues 
 . 
 forEach 
 ( 
 valueBucket 
  
 = 
>  
 { 
  
 const 
  
 values 
  
 = 
  
 valueBucket 
 . 
 quasiIdsValues 
 . 
 map 
 ( 
 value 
  
 = 
>  
 getValue 
 ( 
 value 
 )); 
  
 console 
 . 
 log 
 ( 
 `    Values: 
 ${ 
 values 
 . 
 join 
 ( 
 ' ' 
 ) 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
  
 `    Estimated k-map anonymity: 
 ${ 
 valueBucket 
 . 
 estimatedAnonymity 
 } 
 ` 
  
 ); 
  
 }); 
  
 }); 
 } 
 await 
  
 kMapEstimationAnalysis 
 (); 
 

PHP

To learn how to install and use the client library for Sensitive Data Protection, see Sensitive Data Protection client libraries .

To authenticate to Sensitive Data Protection, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  use Exception; 
 use Google\Cloud\Dlp\V2\Action; 
 use Google\Cloud\Dlp\V2\Action\PublishToPubSub; 
 use Google\Cloud\Dlp\V2\BigQueryTable; 
 use Google\Cloud\Dlp\V2\Client\DlpServiceClient; 
 use Google\Cloud\Dlp\V2\CreateDlpJobRequest; 
 use Google\Cloud\Dlp\V2\DlpJob\JobState; 
 use Google\Cloud\Dlp\V2\FieldId; 
 use Google\Cloud\Dlp\V2\GetDlpJobRequest; 
 use Google\Cloud\Dlp\V2\InfoType; 
 use Google\Cloud\Dlp\V2\PrivacyMetric; 
 use Google\Cloud\Dlp\V2\PrivacyMetric\KMapEstimationConfig; 
 use Google\Cloud\Dlp\V2\PrivacyMetric\KMapEstimationConfig\TaggedField; 
 use Google\Cloud\Dlp\V2\RiskAnalysisJobConfig; 
 use Google\Cloud\PubSub\PubSubClient; 
 /** 
 * Computes the k-map risk estimation of a column set in a Google BigQuery table. 
 * 
 * @param string   $callingProjectId  The project ID to run the API call under 
 * @param string   $dataProjectId     The project ID containing the target Datastore 
 * @param string   $topicId           The name of the Pub/Sub topic to notify once the job completes 
 * @param string   $subscriptionId    The name of the Pub/Sub subscription to use when listening for job 
 * @param string   $datasetId         The ID of the dataset to inspect 
 * @param string   $tableId           The ID of the table to inspect 
 * @param string   $regionCode        The ISO 3166-1 region code that the data is representative of 
 * @param string[] $quasiIdNames      Array columns that form a composite key (quasi-identifiers) 
 * @param string[] $infoTypes         Array of infoTypes corresponding to the chosen quasi-identifiers 
 */ 
 function k_map( 
 string $callingProjectId, 
 string $dataProjectId, 
 string $topicId, 
 string $subscriptionId, 
 string $datasetId, 
 string $tableId, 
 string $regionCode, 
 array $quasiIdNames, 
 array $infoTypes 
 ): void { 
 // Instantiate a client. 
 $dlp = new DlpServiceClient(); 
 $pubsub = new PubSubClient(); 
 $topic = $pubsub->topic($topicId); 
 // Verify input 
 if (count($infoTypes) != count($quasiIdNames)) { 
 throw new Exception('Number of infoTypes and number of quasi-identifiers must be equal!'); 
 } 
 // Map infoTypes to quasi-ids 
 $quasiIdObjects = array_map(function ($quasiId, $infoType) { 
 $quasiIdField = (new FieldId()) 
 ->setName($quasiId); 
 $quasiIdType = (new InfoType()) 
 ->setName($infoType); 
 $quasiIdObject = (new TaggedField()) 
 ->setInfoType($quasiIdType) 
 ->setField($quasiIdField); 
 return $quasiIdObject; 
 }, $quasiIdNames, $infoTypes); 
 // Construct analysis config 
 $statsConfig = (new KMapEstimationConfig()) 
 ->setQuasiIds($quasiIdObjects) 
 ->setRegionCode($regionCode); 
 $privacyMetric = (new PrivacyMetric()) 
 ->setKMapEstimationConfig($statsConfig); 
 // Construct items to be analyzed 
 $bigqueryTable = (new BigQueryTable()) 
 ->setProjectId($dataProjectId) 
 ->setDatasetId($datasetId) 
 ->setTableId($tableId); 
 // Construct the action to run when job completes 
 $pubSubAction = (new PublishToPubSub()) 
 ->setTopic($topic->name()); 
 $action = (new Action()) 
 ->setPubSub($pubSubAction); 
 // Construct risk analysis job config to run 
 $riskJob = (new RiskAnalysisJobConfig()) 
 ->setPrivacyMetric($privacyMetric) 
 ->setSourceTable($bigqueryTable) 
 ->setActions([$action]); 
 // Listen for job notifications via an existing topic/subscription. 
 $subscription = $topic->subscription($subscriptionId); 
 // Submit request 
 $parent = "projects/$callingProjectId/locations/global"; 
 $createDlpJobRequest = (new CreateDlpJobRequest()) 
 ->setParent($parent) 
 ->setRiskJob($riskJob); 
 $job = $dlp->createDlpJob($createDlpJobRequest); 
 // Poll Pub/Sub using exponential backoff until job finishes 
 // Consider using an asynchronous execution model such as Cloud Functions 
 $attempt = 1; 
 $startTime = time(); 
 do { 
 foreach ($subscription->pull() as $message) { 
 if ( 
 isset($message->attributes()['DlpJobName']) 
&& $message->attributes()['DlpJobName'] === $job->getName() 
 ) { 
 $subscription->acknowledge($message); 
 // Get the updated job. Loop to avoid race condition with DLP API. 
 do { 
 $getDlpJobRequest = (new GetDlpJobRequest()) 
 ->setName($job->getName()); 
 $job = $dlp->getDlpJob($getDlpJobRequest); 
 } while ($job->getState() == JobState::RUNNING); 
 break 2; // break from parent do while 
 } 
 } 
 print('Waiting for job to complete' . PHP_EOL); 
 // Exponential backoff with max delay of 60 seconds 
 sleep(min(60, pow(2, ++$attempt))); 
 } while (time() - $startTime < 600); // 10 minute timeout 
 // Print finding counts 
 printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState())); 
 switch ($job->getState()) { 
 case JobState::DONE: 
 $histBuckets = $job->getRiskDetails()->getKMapEstimationResult()->getKMapEstimationHistogram(); 
 foreach ($histBuckets as $bucketIndex => $histBucket) { 
 // Print bucket stats 
 printf('Bucket %s:' . PHP_EOL, $bucketIndex); 
 printf( 
 '  Anonymity range: [%s, %s]' . PHP_EOL, 
 $histBucket->getMinAnonymity(), 
 $histBucket->getMaxAnonymity() 
 ); 
 printf('  Size: %s' . PHP_EOL, $histBucket->getBucketSize()); 
 // Print bucket values 
 foreach ($histBucket->getBucketValues() as $percent => $valueBucket) { 
 printf( 
 '  Estimated k-map anonymity: %s' . PHP_EOL, 
 $valueBucket->getEstimatedAnonymity() 
 ); 
 // Pretty-print quasi-ID values 
 print('  Values: ' . PHP_EOL); 
 foreach ($valueBucket->getQuasiIdsValues() as $index => $value) { 
 print('    ' . $value->serializeToJsonString() . PHP_EOL); 
 } 
 } 
 } 
 break; 
 case JobState::FAILED: 
 printf('Job %s had errors:' . PHP_EOL, $job->getName()); 
 $errors = $job->getErrors(); 
 foreach ($errors as $error) { 
 var_dump($error->getDetails()); 
 } 
 break; 
 case JobState::PENDING: 
 print('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL); 
 break; 
 default: 
 print('Unexpected job state. Most likely, the job is either running or has not yet started.'); 
 } 
 } 
 

Python

To learn how to install and use the client library for Sensitive Data Protection, see Sensitive Data Protection client libraries .

To authenticate to Sensitive Data Protection, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  import 
  
 concurrent.futures 
 from 
  
 typing 
  
 import 
 List 
 import 
  
 google.cloud.dlp 
 from 
  
 google.cloud.dlp_v2 
  
 import 
 types 
 import 
  
 google.cloud.pubsub 
 def 
  
 k_map_estimate_analysis 
 ( 
 project 
 : 
 str 
 , 
 table_project_id 
 : 
 str 
 , 
 dataset_id 
 : 
 str 
 , 
 table_id 
 : 
 str 
 , 
 topic_id 
 : 
 str 
 , 
 subscription_id 
 : 
 str 
 , 
 quasi_ids 
 : 
 List 
 [ 
 str 
 ], 
 info_types 
 : 
 List 
 [ 
 str 
 ], 
 region_code 
 : 
 str 
 = 
 "US" 
 , 
 timeout 
 : 
 int 
 = 
 300 
 , 
 ) 
 - 
> None 
 : 
  
 """Uses the Data Loss Prevention API to compute the k-map risk estimation 
 of a column set in a Google BigQuery table. 
 Args: 
 project: The Google Cloud project id to use as a parent resource. 
 table_project_id: The Google Cloud project id where the BigQuery table 
 is stored. 
 dataset_id: The id of the dataset to inspect. 
 table_id: The id of the table to inspect. 
 topic_id: The name of the Pub/Sub topic to notify once the job 
 completes. 
 subscription_id: The name of the Pub/Sub subscription to use when 
 listening for job completion notifications. 
 quasi_ids: A set of columns that form a composite key and optionally 
 their re-identification distributions. 
 info_types: Type of information of the quasi_id in order to provide a 
 statistical model of population. 
 region_code: The ISO 3166-1 region code that the data is representative 
 of. Can be omitted if using a region-specific infoType (such as 
 US_ZIP_5) 
 timeout: The number of seconds to wait for a response from the API. 
 Returns: 
 None; the response from the API is printed to the terminal. 
 """ 
 # Create helper function for unpacking values 
 def 
  
 get_values 
 ( 
 obj 
 : 
 types 
 . 
  Value 
 
 ) 
 - 
> int 
 : 
 return 
 int 
 ( 
 obj 
 . 
 integer_value 
 ) 
 # Instantiate a client. 
 dlp 
 = 
 google 
 . 
 cloud 
 . 
  dlp_v2 
 
 . 
  DlpServiceClient 
 
 () 
 # Convert the project id into full resource ids. 
 topic 
 = 
 google 
 . 
 cloud 
 . 
 pubsub 
 . 
  PublisherClient 
 
 . 
 topic_path 
 ( 
 project 
 , 
 topic_id 
 ) 
 parent 
 = 
 f 
 "projects/ 
 { 
 project 
 } 
 /locations/global" 
 # Location info of the BigQuery table. 
 source_table 
 = 
 { 
 "project_id" 
 : 
 table_project_id 
 , 
 "dataset_id" 
 : 
 dataset_id 
 , 
 "table_id" 
 : 
 table_id 
 , 
 } 
 # Check that numbers of quasi-ids and info types are equal 
 if 
 len 
 ( 
 quasi_ids 
 ) 
 != 
 len 
 ( 
 info_types 
 ): 
 raise 
 ValueError 
 ( 
  
 """Number of infoTypes and number of quasi-identifiers 
 must be equal!""" 
 ) 
 # Convert quasi id list to Protobuf type 
 def 
  
 map_fields 
 ( 
 quasi_id 
 : 
 str 
 , 
 info_type 
 : 
 str 
 ) 
 - 
> dict 
 : 
 return 
 { 
 "field" 
 : 
 { 
 "name" 
 : 
 quasi_id 
 }, 
 "info_type" 
 : 
 { 
 "name" 
 : 
 info_type 
 }} 
 quasi_ids 
 = 
 map 
 ( 
 map_fields 
 , 
 quasi_ids 
 , 
 info_types 
 ) 
 # Tell the API where to send a notification when the job is complete. 
 actions 
 = 
 [{ 
 "pub_sub" 
 : 
 { 
 "topic" 
 : 
 topic 
 }}] 
 # Configure risk analysis job 
 # Give the name of the numeric column to compute risk metrics for 
 risk_job 
 = 
 { 
 "privacy_metric" 
 : 
 { 
 "k_map_estimation_config" 
 : 
 { 
 "quasi_ids" 
 : 
 quasi_ids 
 , 
 "region_code" 
 : 
 region_code 
 , 
 } 
 }, 
 "source_table" 
 : 
 source_table 
 , 
 "actions" 
 : 
 actions 
 , 
 } 
 # Call API to start risk analysis job 
 operation 
 = 
 dlp 
 . 
 create_dlp_job 
 ( 
 request 
 = 
 { 
 "parent" 
 : 
 parent 
 , 
 "risk_job" 
 : 
 risk_job 
 }) 
 def 
  
 callback 
 ( 
 message 
 : 
 google 
 . 
 cloud 
 . 
 pubsub_v1 
 . 
 subscriber 
 . 
 message 
 . 
  Message 
 
 ) 
 - 
> None 
 : 
 if 
 message 
 . 
  attributes 
 
 [ 
 "DlpJobName" 
 ] 
 == 
 operation 
 . 
 name 
 : 
 # This is the message we're looking for, so acknowledge it. 
 message 
 . 
  ack 
 
 () 
 # Now that the job is done, fetch the results and print them. 
 job 
 = 
 dlp 
 . 
 get_dlp_job 
 ( 
 request 
 = 
 { 
 "name" 
 : 
 operation 
 . 
 name 
 }) 
 print 
 ( 
 f 
 "Job name: 
 { 
 job 
 . 
 name 
 } 
 " 
 ) 
 histogram_buckets 
 = 
 ( 
 job 
 . 
 risk_details 
 . 
 k_map_estimation_result 
 . 
 k_map_estimation_histogram 
 ) 
 # Print bucket stats 
 for 
 i 
 , 
 bucket 
 in 
 enumerate 
 ( 
 histogram_buckets 
 ): 
 print 
 ( 
 f 
 "Bucket 
 { 
 i 
 } 
 :" 
 ) 
 print 
 ( 
 "   Anonymity range: [ 
 {} 
 , 
 {} 
 ]" 
 . 
 format 
 ( 
 bucket 
 . 
 min_anonymity 
 , 
 bucket 
 . 
 max_anonymity 
 ) 
 ) 
 print 
 ( 
 f 
 "   Size: 
 { 
 bucket 
 . 
 bucket_size 
 } 
 " 
 ) 
 for 
 value_bucket 
 in 
 bucket 
 . 
 bucket_values 
 : 
 print 
 ( 
 "   Values: 
 {} 
 " 
 . 
 format 
 ( 
 map 
 ( 
 get_values 
 , 
 value_bucket 
 . 
 quasi_ids_values 
 ) 
 ) 
 ) 
 print 
 ( 
 "   Estimated k-map anonymity: 
 {} 
 " 
 . 
 format 
 ( 
 value_bucket 
 . 
 estimated_anonymity 
 ) 
 ) 
 subscription 
 . 
 set_result 
 ( 
 None 
 ) 
 else 
 : 
 # This is not the message we're looking for. 
 message 
 . 
  drop 
 
 () 
 # Create a Pub/Sub client and find the subscription. The subscription is 
 # expected to already be listening to the topic. 
 subscriber 
 = 
 google 
 . 
 cloud 
 . 
 pubsub 
 . 
  SubscriberClient 
 
 () 
 subscription_path 
 = 
 subscriber 
 . 
 subscription_path 
 ( 
 project 
 , 
 subscription_id 
 ) 
 subscription 
 = 
  subscribe 
 
r . 
  subscribe 
 
 ( 
 subscription_path 
 , 
 callback 
 ) 
 try 
 : 
 subscription 
 . 
 result 
 ( 
 timeout 
 = 
 timeout 
 ) 
 except 
 concurrent 
 . 
 futures 
 . 
 TimeoutError 
 : 
 print 
 ( 
 "No event received before the timeout. Please verify that the " 
 "subscription provided is subscribed to the topic provided." 
 ) 
 subscription 
 . 
  close 
 
 () 
 

C#

To learn how to install and use the client library for Sensitive Data Protection, see Sensitive Data Protection client libraries .

To authenticate to Sensitive Data Protection, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  using 
  
  Google.Api.Gax.ResourceNames 
 
 ; 
 using 
  
  Google.Cloud.Dlp.V2 
 
 ; 
 using 
  
  Google.Cloud.PubSub.V1 
 
 ; 
 using 
  
 Newtonsoft.Json 
 ; 
 using 
  
 System 
 ; 
 using 
  
 System.Collections.Generic 
 ; 
 using 
  
 System.Linq 
 ; 
 using 
  
 System.Threading 
 ; 
 using 
  
 System.Threading.Tasks 
 ; 
 using 
  
 static 
  
 Google 
 . 
 Cloud 
 . 
 Dlp 
 . 
 V2 
 . 
 Action 
 . 
 Types 
 ; 
 using 
  
 static 
  
 Google 
 . 
 Cloud 
 . 
 Dlp 
 . 
 V2 
 . 
 PrivacyMetric 
 . 
 Types 
 ; 
 using 
  
 static 
  
 Google 
 . 
 Cloud 
 . 
 Dlp 
 . 
 V2 
 . 
 PrivacyMetric 
 . 
 Types 
 . 
 KMapEstimationConfig 
 . 
 Types 
 ; 
 public 
  
 class 
  
 RiskAnalysisCreateKMap 
 { 
  
 public 
  
 static 
  
 object 
  
 KMap 
 ( 
  
 string 
  
 callingProjectId 
 , 
  
 string 
  
 tableProjectId 
 , 
  
 string 
  
 datasetId 
 , 
  
 string 
  
 tableId 
 , 
  
 string 
  
 topicId 
 , 
  
 string 
  
 subscriptionId 
 , 
  
 IEnumerable<FieldId> 
  
 quasiIds 
 , 
  
 IEnumerable<InfoType> 
  
 infoTypes 
 , 
  
 string 
  
 regionCode 
 ) 
  
 { 
  
 var 
  
 dlp 
  
 = 
  
  DlpServiceClient 
 
 . 
  Create 
 
 (); 
  
 // Construct + submit the job 
  
 var 
  
 kmapEstimationConfig 
  
 = 
  
 new 
  
 KMapEstimationConfig 
  
 { 
  
 QuasiIds 
  
 = 
  
 { 
  
 quasiIds 
 . 
 Zip 
 ( 
  
 infoTypes 
 , 
  
 ( 
 Field 
 , 
  
 InfoType 
 ) 
  
 = 
>  
 new 
  
  TaggedField 
 
  
 { 
  
 Field 
  
 = 
  
 Field 
 , 
  
 InfoType 
  
 = 
  
 InfoType 
  
 } 
  
 ) 
  
 }, 
  
 RegionCode 
  
 = 
  
 regionCode 
  
 }; 
  
 var 
  
 config 
  
 = 
  
 new 
  
  RiskAnalysisJobConfig 
 
 () 
  
 { 
  
 PrivacyMetric 
  
 = 
  
 new 
  
  PrivacyMetric 
 
  
 { 
  
 KMapEstimationConfig 
  
 = 
  
 kmapEstimationConfig 
  
 }, 
  
 SourceTable 
  
 = 
  
 new 
  
  BigQueryTable 
 
  
 { 
  
 ProjectId 
  
 = 
  
 tableProjectId 
 , 
  
 DatasetId 
  
 = 
  
 datasetId 
 , 
  
 TableId 
  
 = 
  
 tableId 
  
 }, 
  
 Actions 
  
 = 
  
 { 
  
 new 
  
 Google 
 . 
 Cloud 
 . 
 Dlp 
 . 
 V2 
 . 
 Action 
  
 { 
  
 PubSub 
  
 = 
  
 new 
  
  PublishToPubSub 
 
  
 { 
  
 Topic 
  
 = 
  
 $"projects/{callingProjectId}/topics/{topicId}" 
  
 } 
  
 } 
  
 } 
  
 }; 
  
 var 
  
 submittedJob 
  
 = 
  
 dlp 
 . 
 CreateDlpJob 
 ( 
  
 new 
  
  CreateDlpJobRequest 
 
  
 { 
  
 ParentAsProjectName 
  
 = 
  
 new 
  
  ProjectName 
 
 ( 
 callingProjectId 
 ), 
  
 RiskJob 
  
 = 
  
 config 
  
 }); 
  
 // Listen to pub/sub for the job 
  
 var 
  
 subscriptionName 
  
 = 
  
 new 
  
  SubscriptionName 
 
 ( 
  
 callingProjectId 
 , 
  
 subscriptionId 
 ); 
  
 var 
  
 subscriber 
  
 = 
  
  SubscriberClient 
 
 . 
  CreateAsync 
 
 ( 
  
 subscriptionName 
 ). 
 Result 
 ; 
  
 // SimpleSubscriber runs your message handle function on multiple 
  
 // threads to maximize throughput. 
  
 var 
  
 done 
  
 = 
  
 new 
  
 ManualResetEventSlim 
 ( 
 false 
 ); 
  
 subscriber 
 . 
 StartAsync 
 (( 
  PubsubMessage 
 
  
 message 
 , 
  
 CancellationToken 
  
 cancel 
 ) 
  
 = 
>  
 { 
  
 if 
  
 ( 
 message 
 . 
 Attributes 
 [ 
 "DlpJobName" 
 ] 
  
 == 
  
 submittedJob 
 . 
 Name 
 ) 
  
 { 
  
 Thread 
 . 
 Sleep 
 ( 
 500 
 ); 
  
 // Wait for DLP API results to become consistent 
  
 done 
 . 
 Set 
 (); 
  
 return 
  
 Task 
 . 
 FromResult 
 ( 
  SubscriberClient 
 
 . 
  Reply 
 
 . 
  Ack 
 
 ); 
  
 } 
  
 else 
  
 { 
  
 return 
  
 Task 
 . 
 FromResult 
 ( 
  SubscriberClient 
 
 . 
  Reply 
 
 . 
  Nack 
 
 ); 
  
 } 
  
 }); 
  
 done 
 . 
 Wait 
 ( 
 TimeSpan 
 . 
 FromMinutes 
 ( 
 10 
 )); 
  
 // 10 minute timeout; may not work for large jobs 
  
 subscriber 
 . 
 StopAsync 
 ( 
 CancellationToken 
 . 
 None 
 ). 
 Wait 
 (); 
  
 // Process results 
  
 var 
  
 resultJob 
  
 = 
  
 dlp 
 . 
 GetDlpJob 
 ( 
 new 
  
  GetDlpJobRequest 
 
  
 { 
  
 DlpJobName 
  
 = 
  
  DlpJobName 
 
 . 
  Parse 
 
 ( 
 submittedJob 
 . 
 Name 
 ) 
  
 }); 
  
 var 
  
 result 
  
 = 
  
 resultJob 
 . 
 RiskDetails 
 . 
 KMapEstimationResult 
 ; 
  
 for 
  
 ( 
 var 
  
 histogramIdx 
  
 = 
  
 0 
 ; 
  
 histogramIdx 
 < 
 result 
 . 
 KMapEstimationHistogram 
 . 
 Count 
 ; 
  
 histogramIdx 
 ++ 
 ) 
  
 { 
  
 var 
  
 histogramValue 
  
 = 
  
 result 
 . 
  KMapEstimationHistogram 
 
 [ 
 histogramIdx 
 ]; 
  
 Console 
 . 
 WriteLine 
 ( 
 $"Bucket {histogramIdx}" 
 ); 
  
 Console 
 . 
 WriteLine 
 ( 
 $"  Anonymity range: [{histogramValue. MinAnonymity 
}, {histogramValue. MaxAnonymity 
}]." 
 ); 
  
 Console 
 . 
 WriteLine 
 ( 
 $"  Size: {histogramValue.BucketSize}" 
 ); 
  
 foreach 
  
 ( 
 var 
  
 datapoint 
  
 in 
  
 histogramValue 
 . 
 BucketValues 
 ) 
  
 { 
  
 // 'UnpackValue(x)' is a prettier version of 'x.toString()' 
  
 Console 
 . 
 WriteLine 
 ( 
 $"    Values: [{String.Join(',', datapoint.QuasiIdsValues.Select(x => UnpackValue(x)))}]" 
 ); 
  
 Console 
 . 
 WriteLine 
 ( 
 $"    Estimated k-map anonymity: {datapoint. EstimatedAnonymity 
}" 
 ); 
  
 } 
  
 } 
  
 return 
  
 0 
 ; 
  
 } 
  
 public 
  
 static 
  
 string 
  
 UnpackValue 
 ( 
  Value 
 
  
 protoValue 
 ) 
  
 { 
  
 var 
  
 jsonValue 
  
 = 
  
 JsonConvert 
 . 
 DeserializeObject<Dictionary<string 
 , 
  
 object 
>> ( 
 protoValue 
 . 
 ToString 
 ()); 
  
 return 
  
 jsonValue 
 . 
  Values 
 
 . 
 ElementAt 
 ( 
 0 
 ). 
 ToString 
 (); 
  
 } 
 } 
 

Viewing k -map job results

To retrieve the results of the k -map risk analysis job using the REST API, send the following GET request to the projects.dlpJobs resource. Replace PROJECT_ID with your project ID and JOB_ID with the identifier of the job you want to obtain results for. The job ID was returned when you started the job, and can also be retrieved by listing all jobs .

GET https://dlp.googleapis.com/v2/projects/ PROJECT_ID 
/dlpJobs/ JOB_ID 

The request returns a JSON object containing an instance of the job. The results of the analysis are inside the "riskDetails" key, in an AnalyzeDataSourceRiskDetails object. For more information, see the API reference for the DlpJob resource.

What's next

Design a Mobile Site
View Site in Mobile | Classic
Share by: