Computing l-diversity for a dataset

L -diversity is a property of a dataset and an extension of k -anonymity that measures the diversity of sensitive values for each column in which they occur. A dataset has l -diversity if, for every set of rows with identical quasi-identifiers, there are at least l distinct values for each sensitive attribute.

You can compute the l -diversity value based on one or more columns, or fields, of a dataset. This topic demonstrates how to compute l -diversity values for a dataset using Sensitive Data Protection. For more information about l -diversity or risk analysis in general, see the risk analysis concept topic before continuing on.

Before you begin

Before continuing, be sure you've done the following:

  1. Sign in to your Google Account.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
  3. Go to the project selector
  4. Make sure that billing is enabled for your Google Cloud project. Learn how to confirm billing is enabled for your project.
  5. Enable Sensitive Data Protection.
  6. Enable Sensitive Data Protection
  7. Select a BigQuery dataset to analyze. Sensitive Data Protection calculates the l -diversity metric by scanning a BigQuery table.
  8. Determine a sensitive field identifier (if applicable) and at least one quasi-identifier in the dataset. For more information, see Risk analysis terms and techniques .

Compute l-diversity

Sensitive Data Protection performs risk analysis whenever a risk analysis job runs. You must create the job first, either by using the Google Cloud console, sending a DLP API request, or using a Sensitive Data Protection client library.

Console

  1. In the Google Cloud console, go to the Create risk analysispage.

    Go to Create risk analysis

  2. In the Choose input datasection, specify the BigQuery table to scan by entering the project ID of the project containing the table, the dataset ID of the table, and the name of the table.

  3. Under Privacy metric to compute, select l-diversity.

  4. In the Job IDsection, you can optionally give the job a custom identifier and select a resource location in which Sensitive Data Protection will process your data. When you're done, click Continue.

  5. In the Define fieldssection, you specify sensitive fields and quasi-identifiers for the l -diversity risk job. Sensitive Data Protection accesses the metadata of the BigQuery table you specified in the previous step and attempts to populate the list of fields.

    1. Select the appropriate checkbox to specify a field as either a sensitive field (S) or quasi-identifier (QI). You must select 1 sensitive field and at least 1 quasi-identifier.
    2. If Sensitive Data Protection isn't able to populate the fields, click Enter field nameto manually enter one or more fields and set each one as sensitive field or quasi-identifier. When you're done, click Continue.
  6. In the Add actionssection, you can add optional actions to perform when the risk job is complete. The available options are:

    • Save to BigQuery: Saves the results of the risk analysis scan to a BigQuery table.
    • Publish to Pub/Sub: Publishes a notification to a Pub/Sub topic .

    • Notify by email: Sends you an email with results. When you're done, click Create.

The l -diversity risk analysis job starts immediately.

C#

To learn how to install and use the client library for Sensitive Data Protection, see Sensitive Data Protection client libraries .

To authenticate to Sensitive Data Protection, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  using 
  
  Google.Api.Gax.ResourceNames 
 
 ; 
 using 
  
  Google.Cloud.Dlp.V2 
 
 ; 
 using 
  
  Google.Cloud.PubSub.V1 
 
 ; 
 using 
  
 Newtonsoft.Json 
 ; 
 using 
  
 System 
 ; 
 using 
  
 System.Collections.Generic 
 ; 
 using 
  
 System.Linq 
 ; 
 using 
  
 System.Threading 
 ; 
 using 
  
 System.Threading.Tasks 
 ; 
 using 
  
 static 
  
 Google 
 . 
 Cloud 
 . 
 Dlp 
 . 
 V2 
 . 
 Action 
 . 
 Types 
 ; 
 using 
  
 static 
  
 Google 
 . 
 Cloud 
 . 
 Dlp 
 . 
 V2 
 . 
 PrivacyMetric 
 . 
 Types 
 ; 
 public 
  
 class 
  
 RiskAnalysisCreateLDiversity 
 { 
  
 public 
  
 static 
  
 object 
  
 LDiversity 
 ( 
  
 string 
  
 callingProjectId 
 , 
  
 string 
  
 tableProjectId 
 , 
  
 string 
  
 datasetId 
 , 
  
 string 
  
 tableId 
 , 
  
 string 
  
 topicId 
 , 
  
 string 
  
 subscriptionId 
 , 
  
 IEnumerable<FieldId> 
  
 quasiIds 
 , 
  
 string 
  
 sensitiveAttribute 
 ) 
  
 { 
  
 var 
  
 dlp 
  
 = 
  
  DlpServiceClient 
 
 . 
  Create 
 
 (); 
  
 // Construct + submit the job 
  
 var 
  
 ldiversityConfig 
  
 = 
  
 new 
  
 LDiversityConfig 
  
 { 
  
 SensitiveAttribute 
  
 = 
  
 new 
  
  FieldId 
 
  
 { 
  
 Name 
  
 = 
  
 sensitiveAttribute 
  
 }, 
  
 QuasiIds 
  
 = 
  
 { 
  
 quasiIds 
  
 } 
  
 }; 
  
 var 
  
 config 
  
 = 
  
 new 
  
  RiskAnalysisJobConfig 
 
  
 { 
  
 PrivacyMetric 
  
 = 
  
 new 
  
  PrivacyMetric 
 
  
 { 
  
 LDiversityConfig 
  
 = 
  
 ldiversityConfig 
  
 }, 
  
 SourceTable 
  
 = 
  
 new 
  
  BigQueryTable 
 
  
 { 
  
 ProjectId 
  
 = 
  
 tableProjectId 
 , 
  
 DatasetId 
  
 = 
  
 datasetId 
 , 
  
 TableId 
  
 = 
  
 tableId 
  
 }, 
  
 Actions 
  
 = 
  
 { 
  
 new 
  
 Google 
 . 
 Cloud 
 . 
 Dlp 
 . 
 V2 
 . 
 Action 
  
 { 
  
 PubSub 
  
 = 
  
 new 
  
  PublishToPubSub 
 
  
 { 
  
 Topic 
  
 = 
  
 $"projects/{callingProjectId}/topics/{topicId}" 
  
 } 
  
 } 
  
 } 
  
 }; 
  
 var 
  
 submittedJob 
  
 = 
  
 dlp 
 . 
 CreateDlpJob 
 ( 
  
 new 
  
  CreateDlpJobRequest 
 
  
 { 
  
 ParentAsProjectName 
  
 = 
  
 new 
  
  ProjectName 
 
 ( 
 callingProjectId 
 ), 
  
 RiskJob 
  
 = 
  
 config 
  
 }); 
  
 // Listen to pub/sub for the job 
  
 var 
  
 subscriptionName 
  
 = 
  
 new 
  
  SubscriptionName 
 
 ( 
 callingProjectId 
 , 
  
 subscriptionId 
 ); 
  
 var 
  
 subscriber 
  
 = 
  
  SubscriberClient 
 
 . 
  CreateAsync 
 
 ( 
 subscriptionName 
 ). 
 Result 
 ; 
  
 // SimpleSubscriber runs your message handle function on multiple 
  
 // threads to maximize throughput. 
  
 var 
  
 done 
  
 = 
  
 new 
  
 ManualResetEventSlim 
 ( 
 false 
 ); 
  
 subscriber 
 . 
 StartAsync 
 (( 
  PubsubMessage 
 
  
 message 
 , 
  
 CancellationToken 
  
 cancel 
 ) 
  
 = 
>  
 { 
  
 if 
  
 ( 
 message 
 . 
 Attributes 
 [ 
 "DlpJobName" 
 ] 
  
 == 
  
 submittedJob 
 . 
 Name 
 ) 
  
 { 
  
 Thread 
 . 
 Sleep 
 ( 
 500 
 ); 
  
 // Wait for DLP API results to become consistent 
  
 done 
 . 
 Set 
 (); 
  
 return 
  
 Task 
 . 
 FromResult 
 ( 
  SubscriberClient 
 
 . 
  Reply 
 
 . 
  Ack 
 
 ); 
  
 } 
  
 else 
  
 { 
  
 return 
  
 Task 
 . 
 FromResult 
 ( 
  SubscriberClient 
 
 . 
  Reply 
 
 . 
  Nack 
 
 ); 
  
 } 
  
 }); 
  
 done 
 . 
 Wait 
 ( 
 TimeSpan 
 . 
 FromMinutes 
 ( 
 10 
 )); 
  
 // 10 minute timeout; may not work for large jobs 
  
 subscriber 
 . 
 StopAsync 
 ( 
 CancellationToken 
 . 
 None 
 ). 
 Wait 
 (); 
  
 // Process results 
  
 var 
  
 resultJob 
  
 = 
  
 dlp 
 . 
 GetDlpJob 
 ( 
  
 new 
  
  GetDlpJobRequest 
 
  
 { 
  
 DlpJobName 
  
 = 
  
  DlpJobName 
 
 . 
  Parse 
 
 ( 
 submittedJob 
 . 
 Name 
 ) 
  
 }); 
  
 var 
  
 result 
  
 = 
  
 resultJob 
 . 
 RiskDetails 
 . 
 LDiversityResult 
 ; 
  
 for 
  
 ( 
 var 
  
 bucketIdx 
  
 = 
  
 0 
 ; 
  
 bucketIdx 
 < 
 result 
 . 
 SensitiveValueFrequencyHistogramBuckets 
 . 
 Count 
 ; 
  
 bucketIdx 
 ++ 
 ) 
  
 { 
  
 var 
  
 bucket 
  
 = 
  
 result 
 . 
  SensitiveValueFrequencyHistogramBuckets 
 
 [ 
 bucketIdx 
 ]; 
  
 Console 
 . 
 WriteLine 
 ( 
 $"Bucket {bucketIdx}" 
 ); 
  
 Console 
 . 
 WriteLine 
 ( 
 $"  Bucket size range: [{bucket. SensitiveValueFrequencyLowerBound 
}, {bucket. SensitiveValueFrequencyUpperBound 
}]." 
 ); 
  
 Console 
 . 
 WriteLine 
 ( 
 $"  {bucket.BucketSize} unique value(s) total." 
 ); 
  
 foreach 
  
 ( 
 var 
  
 bucketValue 
  
 in 
  
 bucket 
 . 
 BucketValues 
 ) 
  
 { 
  
 // 'UnpackValue(x)' is a prettier version of 'x.toString()' 
  
 Console 
 . 
 WriteLine 
 ( 
 $"    Quasi-ID values: [{String.Join(',', bucketValue.QuasiIdsValues.Select(x => UnpackValue(x)))}]" 
 ); 
  
 Console 
 . 
 WriteLine 
 ( 
 $"    Class size: {bucketValue.EquivalenceClassSize}" 
 ); 
  
 foreach 
  
 ( 
 var 
  
 topValue 
  
 in 
  
 bucketValue 
 . 
  TopSensitiveValues 
 
 ) 
  
 { 
  
 Console 
 . 
 WriteLine 
 ( 
 $"    Sensitive value {UnpackValue(topValue. Value 
)} occurs {topValue.Count} time(s)." 
 ); 
  
 } 
  
 } 
  
 } 
  
 return 
  
 result 
 ; 
  
 } 
  
 public 
  
 static 
  
 string 
  
 UnpackValue 
 ( 
  Value 
 
  
 protoValue 
 ) 
  
 { 
  
 var 
  
 jsonValue 
  
 = 
  
 JsonConvert 
 . 
 DeserializeObject<Dictionary<string 
 , 
  
 object 
>> ( 
 protoValue 
 . 
 ToString 
 ()); 
  
 return 
  
 jsonValue 
 . 
  Values 
 
 . 
 ElementAt 
 ( 
 0 
 ). 
 ToString 
 (); 
  
 } 
 } 
 

Go

To learn how to install and use the client library for Sensitive Data Protection, see Sensitive Data Protection client libraries .

To authenticate to Sensitive Data Protection, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  import 
  
 ( 
  
 "context" 
  
 "fmt" 
  
 "io" 
  
 "strings" 
  
 "time" 
  
 dlp 
  
 "cloud.google.com/go/dlp/apiv2" 
  
 "cloud.google.com/go/dlp/apiv2/dlppb" 
  
 "cloud.google.com/go/pubsub" 
 ) 
 // riskLDiversity computes the L Diversity of the given columns. 
 func 
  
 riskLDiversity 
 ( 
 w 
  
 io 
 . 
 Writer 
 , 
  
 projectID 
 , 
  
 dataProject 
 , 
  
 pubSubTopic 
 , 
  
 pubSubSub 
 , 
  
 datasetID 
 , 
  
 tableID 
 , 
  
 sensitiveAttribute 
  
 string 
 , 
  
 columnNames 
  
 ... 
 string 
 ) 
  
 error 
  
 { 
  
 // projectID := "my-project-id" 
  
 // dataProject := "bigquery-public-data" 
  
 // pubSubTopic := "dlp-risk-sample-topic" 
  
 // pubSubSub := "dlp-risk-sample-sub" 
  
 // datasetID := "nhtsa_traffic_fatalities" 
  
 // tableID := "accident_2015" 
  
 // sensitiveAttribute := "city" 
  
 // columnNames := "state_number", "county" 
  
 ctx 
  
 := 
  
 context 
 . 
 Background 
 () 
  
 client 
 , 
  
 err 
  
 := 
  
 dlp 
 . 
 NewClient 
 ( 
 ctx 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 return 
  
 fmt 
 . 
 Errorf 
 ( 
 "dlp.NewClient: %w" 
 , 
  
 err 
 ) 
  
 } 
  
 defer 
  
 client 
 . 
 Close 
 () 
  
 // Create a PubSub Client used to listen for when the inspect job finishes. 
  
 pubsubClient 
 , 
  
 err 
  
 := 
  
 pubsub 
 . 
 NewClient 
 ( 
 ctx 
 , 
  
 projectID 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 return 
  
 err 
  
 } 
  
 defer 
  
 pubsubClient 
 . 
 Close 
 () 
  
 // Create a PubSub subscription we can use to listen for messages. 
  
 // Create the Topic if it doesn't exist. 
  
 t 
  
 := 
  
 pubsubClient 
 . 
 Topic 
 ( 
 pubSubTopic 
 ) 
  
 topicExists 
 , 
  
 err 
  
 := 
  
 t 
 . 
 Exists 
 ( 
 ctx 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 return 
  
 err 
  
 } 
  
 if 
  
 ! 
 topicExists 
  
 { 
  
 if 
  
 t 
 , 
  
 err 
  
 = 
  
 pubsubClient 
 . 
 CreateTopic 
 ( 
 ctx 
 , 
  
 pubSubTopic 
 ); 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 return 
  
 err 
  
 } 
  
 } 
  
 // Create the Subscription if it doesn't exist. 
  
 s 
  
 := 
  
 pubsubClient 
 . 
 Subscription 
 ( 
 pubSubSub 
 ) 
  
 subExists 
 , 
  
 err 
  
 := 
  
 s 
 . 
 Exists 
 ( 
 ctx 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 return 
  
 err 
  
 } 
  
 if 
  
 ! 
 subExists 
  
 { 
  
 if 
  
 s 
 , 
  
 err 
  
 = 
  
 pubsubClient 
 . 
 CreateSubscription 
 ( 
 ctx 
 , 
  
 pubSubSub 
 , 
  
 pubsub 
 . 
 SubscriptionConfig 
 { 
 Topic 
 : 
  
 t 
 }); 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 return 
  
 err 
  
 } 
  
 } 
  
 // topic is the PubSub topic string where messages should be sent. 
  
 topic 
  
 := 
  
 "projects/" 
  
 + 
  
 projectID 
  
 + 
  
 "/topics/" 
  
 + 
  
 pubSubTopic 
  
 // Build the QuasiID slice. 
  
 var 
  
 q 
  
 [] 
 * 
 dlppb 
 . 
 FieldId 
  
 for 
  
 _ 
 , 
  
 c 
  
 := 
  
 range 
  
 columnNames 
  
 { 
  
 q 
  
 = 
  
 append 
 ( 
 q 
 , 
  
& dlppb 
 . 
 FieldId 
 { 
 Name 
 : 
  
 c 
 }) 
  
 } 
  
 // Create a configured request. 
  
 req 
  
 := 
  
& dlppb 
 . 
 CreateDlpJobRequest 
 { 
  
 Parent 
 : 
  
 fmt 
 . 
 Sprintf 
 ( 
 "projects/%s/locations/global" 
 , 
  
 projectID 
 ), 
  
 Job 
 : 
  
& dlppb 
 . 
 CreateDlpJobRequest_RiskJob 
 { 
  
 RiskJob 
 : 
  
& dlppb 
 . 
 RiskAnalysisJobConfig 
 { 
  
 // PrivacyMetric configures what to compute. 
  
 PrivacyMetric 
 : 
  
& dlppb 
 . 
 PrivacyMetric 
 { 
  
 Type 
 : 
  
& dlppb 
 . 
 PrivacyMetric_LDiversityConfig_ 
 { 
  
 LDiversityConfig 
 : 
  
& dlppb 
 . 
 PrivacyMetric_LDiversityConfig 
 { 
  
 QuasiIds 
 : 
  
 q 
 , 
  
 SensitiveAttribute 
 : 
  
& dlppb 
 . 
 FieldId 
 { 
  
 Name 
 : 
  
 sensitiveAttribute 
 , 
  
 }, 
  
 }, 
  
 }, 
  
 }, 
  
 // SourceTable describes where to find the data. 
  
 SourceTable 
 : 
  
& dlppb 
 . 
 BigQueryTable 
 { 
  
 ProjectId 
 : 
  
 dataProject 
 , 
  
 DatasetId 
 : 
  
 datasetID 
 , 
  
 TableId 
 : 
  
 tableID 
 , 
  
 }, 
  
 // Send a message to PubSub using Actions. 
  
 Actions 
 : 
  
 [] 
 * 
 dlppb 
 . 
 Action 
 { 
  
 { 
  
 Action 
 : 
  
& dlppb 
 . 
 Action_PubSub 
 { 
  
 PubSub 
 : 
  
& dlppb 
 . 
 Action_PublishToPubSub 
 { 
  
 Topic 
 : 
  
 topic 
 , 
  
 }, 
  
 }, 
  
 }, 
  
 }, 
  
 }, 
  
 }, 
  
 } 
  
 // Create the risk job. 
  
 j 
 , 
  
 err 
  
 := 
  
 client 
 . 
 CreateDlpJob 
 ( 
 ctx 
 , 
  
 req 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 return 
  
 fmt 
 . 
 Errorf 
 ( 
 "CreateDlpJob: %w" 
 , 
  
 err 
 ) 
  
 } 
  
 fmt 
 . 
 Fprintf 
 ( 
 w 
 , 
  
 "Created job: %v\n" 
 , 
  
 j 
 . 
 GetName 
 ()) 
  
 // Wait for the risk job to finish by waiting for a PubSub message. 
  
 // This only waits for 10 minutes. For long jobs, consider using a truly 
  
 // asynchronous execution model such as Cloud Functions. 
  
 ctx 
 , 
  
 cancel 
  
 := 
  
 context 
 . 
 WithTimeout 
 ( 
 ctx 
 , 
  
 10 
 * 
 time 
 . 
 Minute 
 ) 
  
 defer 
  
 cancel 
 () 
  
 err 
  
 = 
  
 s 
 . 
 Receive 
 ( 
 ctx 
 , 
  
 func 
 ( 
 ctx 
  
 context 
 . 
 Context 
 , 
  
 msg 
  
 * 
 pubsub 
 . 
 Message 
 ) 
  
 { 
  
 // If this is the wrong job, do not process the result. 
  
 if 
  
 msg 
 . 
 Attributes 
 [ 
 "DlpJobName" 
 ] 
  
 != 
  
 j 
 . 
 GetName 
 () 
  
 { 
  
 msg 
 . 
 Nack 
 () 
  
 return 
  
 } 
  
 msg 
 . 
 Ack 
 () 
  
 time 
 . 
 Sleep 
 ( 
 500 
  
 * 
  
 time 
 . 
 Millisecond 
 ) 
  
 j 
 , 
  
 err 
  
 := 
  
 client 
 . 
 GetDlpJob 
 ( 
 ctx 
 , 
  
& dlppb 
 . 
 GetDlpJobRequest 
 { 
  
 Name 
 : 
  
 j 
 . 
 GetName 
 (), 
  
 }) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 fmt 
 . 
 Fprintf 
 ( 
 w 
 , 
  
 "GetDlpJob: %v" 
 , 
  
 err 
 ) 
  
 return 
  
 } 
  
 h 
  
 := 
  
 j 
 . 
 GetRiskDetails 
 (). 
 GetLDiversityResult 
 (). 
 GetSensitiveValueFrequencyHistogramBuckets 
 () 
  
 for 
  
 i 
 , 
  
 b 
  
 := 
  
 range 
  
 h 
  
 { 
  
 fmt 
 . 
 Fprintf 
 ( 
 w 
 , 
  
 "Histogram bucket %v\n" 
 , 
  
 i 
 ) 
  
 fmt 
 . 
 Fprintf 
 ( 
 w 
 , 
  
 "  Size range: [%v,%v]\n" 
 , 
  
 b 
 . 
 GetSensitiveValueFrequencyLowerBound 
 (), 
  
 b 
 . 
 GetSensitiveValueFrequencyUpperBound 
 ()) 
  
 fmt 
 . 
 Fprintf 
 ( 
 w 
 , 
  
 "  %v unique values total\n" 
 , 
  
 b 
 . 
 GetBucketSize 
 ()) 
  
 for 
  
 _ 
 , 
  
 v 
  
 := 
  
 range 
  
 b 
 . 
 GetBucketValues 
 () 
  
 { 
  
 var 
  
 qvs 
  
 [] 
 string 
  
 for 
  
 _ 
 , 
  
 qv 
  
 := 
  
 range 
  
 v 
 . 
 GetQuasiIdsValues 
 () 
  
 { 
  
 qvs 
  
 = 
  
 append 
 ( 
 qvs 
 , 
  
 qv 
 . 
 String 
 ()) 
  
 } 
  
 fmt 
 . 
 Fprintf 
 ( 
 w 
 , 
  
 "    QuasiID values: %s\n" 
 , 
  
 strings 
 . 
 Join 
 ( 
 qvs 
 , 
  
 ", " 
 )) 
  
 fmt 
 . 
 Fprintf 
 ( 
 w 
 , 
  
 "    Class size: %v\n" 
 , 
  
 v 
 . 
 GetEquivalenceClassSize 
 ()) 
  
 for 
  
 _ 
 , 
  
 sv 
  
 := 
  
 range 
  
 v 
 . 
 GetTopSensitiveValues 
 () 
  
 { 
  
 fmt 
 . 
 Fprintf 
 ( 
 w 
 , 
  
 "    Sensitive value %v occurs %v times\n" 
 , 
  
 sv 
 . 
 GetValue 
 (), 
  
 sv 
 . 
 GetCount 
 ()) 
  
 } 
  
 } 
  
 } 
  
 // Stop listening for more messages. 
  
 cancel 
 () 
  
 }) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 return 
  
 fmt 
 . 
 Errorf 
 ( 
 "Recieve: %w" 
 , 
  
 err 
 ) 
  
 } 
  
 return 
  
 nil 
 } 
 

Java

To learn how to install and use the client library for Sensitive Data Protection, see Sensitive Data Protection client libraries .

To authenticate to Sensitive Data Protection, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  import 
  
 com.google.api.core. SettableApiFuture 
 
 ; 
 import 
  
 com.google.cloud.dlp.v2. DlpServiceClient 
 
 ; 
 import 
  
 com.google.cloud.dlp.v2. DlpServiceSettings 
 
 ; 
 import 
  
 com.google.cloud.pubsub.v1. AckReplyConsumer 
 
 ; 
 import 
  
 com.google.cloud.pubsub.v1. MessageReceiver 
 
 ; 
 import 
  
 com.google.cloud.pubsub.v1. Subscriber 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. Action 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. Action 
. PublishToPubSub 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. AnalyzeDataSourceRiskDetails 
. LDiversityResult 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. AnalyzeDataSourceRiskDetails 
. LDiversityResult 
. LDiversityEquivalenceClass 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. AnalyzeDataSourceRiskDetails 
. LDiversityResult 
. LDiversityHistogramBucket 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. BigQueryTable 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. CreateDlpJobRequest 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. DlpJob 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. FieldId 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. GetDlpJobRequest 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. LocationName 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. PrivacyMetric 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. PrivacyMetric 
. LDiversityConfig 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. RiskAnalysisJobConfig 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. Value 
 
 ; 
 import 
  
 com.google.privacy.dlp.v2. ValueFrequency 
 
 ; 
 import 
  
 com.google.pubsub.v1. ProjectSubscriptionName 
 
 ; 
 import 
  
 com.google.pubsub.v1. ProjectTopicName 
 
 ; 
 import 
  
 com.google.pubsub.v1. PubsubMessage 
 
 ; 
 import 
  
 java.io.IOException 
 ; 
 import 
  
 java.util.Arrays 
 ; 
 import 
  
 java.util.List 
 ; 
 import 
  
 java.util.concurrent.ExecutionException 
 ; 
 import 
  
 java.util.concurrent.TimeUnit 
 ; 
 import 
  
 java.util.concurrent.TimeoutException 
 ; 
 import 
  
 java.util.stream.Collectors 
 ; 
 import 
  
 org.threeten.bp.Duration 
 ; 
 @SuppressWarnings 
 ( 
 "checkstyle:AbbreviationAsWordInName" 
 ) 
 class 
 RiskAnalysisLDiversity 
  
 { 
  
 public 
  
 static 
  
 void 
  
 main 
 ( 
 String 
 [] 
  
 args 
 ) 
  
 throws 
  
 Exception 
  
 { 
  
 // TODO(developer): Replace these variables before running the sample. 
  
 String 
  
 projectId 
  
 = 
  
 "your-project-id" 
 ; 
  
 String 
  
 datasetId 
  
 = 
  
 "your-bigquery-dataset-id" 
 ; 
  
 String 
  
 tableId 
  
 = 
  
 "your-bigquery-table-id" 
 ; 
  
 String 
  
 topicId 
  
 = 
  
 "pub-sub-topic" 
 ; 
  
 String 
  
 subscriptionId 
  
 = 
  
 "pub-sub-subscription" 
 ; 
  
 calculateLDiversity 
 ( 
 projectId 
 , 
  
 datasetId 
 , 
  
 tableId 
 , 
  
 topicId 
 , 
  
 subscriptionId 
 ); 
  
 } 
  
 public 
  
 static 
  
 void 
  
 calculateLDiversity 
 ( 
  
 String 
  
 projectId 
 , 
  
 String 
  
 datasetId 
 , 
  
 String 
  
 tableId 
 , 
  
 String 
  
 topicId 
 , 
  
 String 
  
 subscriptionId 
 ) 
  
 throws 
  
 ExecutionException 
 , 
  
 InterruptedException 
 , 
  
 IOException 
  
 { 
  
 // Initialize client that will be used to send requests. This client only needs to be created 
  
 // once, and can be reused for multiple requests. After completing all of your requests, call 
  
 // the "close" method on the client to safely clean up any remaining background resources. 
  
  DlpServiceSettings 
 
 . 
 Builder 
  
 dlpServiceSettingsBuilder 
  
 = 
  
  DlpServiceSettings 
 
 . 
 newBuilder 
 (); 
  
 dlpServiceSettingsBuilder 
  
 . 
 getDlpJobSettings 
 () 
  
 . 
  setRetrySettings 
 
 ( 
  
 dlpServiceSettingsBuilder 
  
 . 
 getDlpJobSettings 
 () 
  
 . 
 getRetrySettings 
 () 
  
 . 
 toBuilder 
 () 
  
 . 
 setTotalTimeout 
 ( 
 Duration 
 . 
 ofSeconds 
 ( 
 600 
 )) 
  
 . 
 build 
 ()); 
  
 try 
  
 ( 
  DlpServiceClient 
 
  
 dlpServiceClient 
  
 = 
  
  DlpServiceClient 
 
 . 
 create 
 ( 
 dlpServiceSettingsBuilder 
 . 
 build 
 ())) 
  
 { 
  
 // Specify the BigQuery table to analyze 
  
  BigQueryTable 
 
  
 bigQueryTable 
  
 = 
  
  BigQueryTable 
 
 . 
 newBuilder 
 () 
  
 . 
 setProjectId 
 ( 
 projectId 
 ) 
  
 . 
 setDatasetId 
 ( 
 datasetId 
 ) 
  
 . 
 setTableId 
 ( 
 tableId 
 ) 
  
 . 
 build 
 (); 
  
 // These values represent the column names of quasi-identifiers to analyze 
  
 List<String> 
  
 quasiIds 
  
 = 
  
 Arrays 
 . 
 asList 
 ( 
 "Age" 
 , 
  
 "Mystery" 
 ); 
  
 // This value represents the column name to compare the quasi-identifiers against 
  
 String 
  
 sensitiveAttribute 
  
 = 
  
 "Name" 
 ; 
  
 // Configure the privacy metric for the job 
  
  FieldId 
 
  
 sensitiveAttributeField 
  
 = 
  
  FieldId 
 
 . 
 newBuilder 
 (). 
 setName 
 ( 
 sensitiveAttribute 
 ). 
 build 
 (); 
  
 List<FieldId> 
  
 quasiIdFields 
  
 = 
  
 quasiIds 
 . 
 stream 
 () 
  
 . 
 map 
 ( 
 columnName 
  
 - 
>  
  FieldId 
 
 . 
 newBuilder 
 (). 
 setName 
 ( 
 columnName 
 ). 
 build 
 ()) 
  
 . 
 collect 
 ( 
 Collectors 
 . 
 toList 
 ()); 
  
  LDiversityConfig 
 
  
 ldiversityConfig 
  
 = 
  
  LDiversityConfig 
 
 . 
 newBuilder 
 () 
  
 . 
 addAllQuasiIds 
 ( 
 quasiIdFields 
 ) 
  
 . 
  setSensitiveAttribute 
 
 ( 
 sensitiveAttributeField 
 ) 
  
 . 
 build 
 (); 
  
  PrivacyMetric 
 
  
 privacyMetric 
  
 = 
  
  PrivacyMetric 
 
 . 
 newBuilder 
 (). 
  setLDiversityConfig 
 
 ( 
 ldiversityConfig 
 ). 
 build 
 (); 
  
 // Create action to publish job status notifications over Google Cloud Pub/ 
  
  ProjectTopicName 
 
  
 topicName 
  
 = 
  
  ProjectTopicName 
 
 . 
 of 
 ( 
 projectId 
 , 
  
 topicId 
 ); 
  
  PublishToPubSub 
 
  
 publishToPubSub 
  
 = 
  
  PublishToPubSub 
 
 . 
 newBuilder 
 (). 
 setTopic 
 ( 
 topicName 
 . 
  toString 
 
 ()). 
 build 
 (); 
  
  Action 
 
  
 action 
  
 = 
  
  Action 
 
 . 
 newBuilder 
 (). 
  setPubSub 
 
 ( 
 publishToPubSub 
 ). 
 build 
 (); 
  
 // Configure the risk analysis job to perform 
  
  RiskAnalysisJobConfig 
 
  
 riskAnalysisJobConfig 
  
 = 
  
  RiskAnalysisJobConfig 
 
 . 
 newBuilder 
 () 
  
 . 
  setSourceTable 
 
 ( 
 bigQueryTable 
 ) 
  
 . 
  setPrivacyMetric 
 
 ( 
 privacyMetric 
 ) 
  
 . 
 addActions 
 ( 
 action 
 ) 
  
 . 
 build 
 (); 
  
 // Build the request to be sent by the client 
  
  CreateDlpJobRequest 
 
  
 createDlpJobRequest 
  
 = 
  
  CreateDlpJobRequest 
 
 . 
 newBuilder 
 () 
  
 . 
 setParent 
 ( 
  LocationName 
 
 . 
 of 
 ( 
 projectId 
 , 
  
 "global" 
 ). 
 toString 
 ()) 
  
 . 
  setRiskJob 
 
 ( 
 riskAnalysisJobConfig 
 ) 
  
 . 
 build 
 (); 
  
 // Send the request to the API using the client 
  
  DlpJob 
 
  
 dlpJob 
  
 = 
  
 dlpServiceClient 
 . 
 createDlpJob 
 ( 
 createDlpJobRequest 
 ); 
  
 // Set up a Pub/Sub subscriber to listen on the job completion status 
  
 final 
  
 SettableApiFuture<Boolean> 
  
 done 
  
 = 
  
  SettableApiFuture 
 
 . 
 create 
 (); 
  
  ProjectSubscriptionName 
 
  
 subscriptionName 
  
 = 
  
  ProjectSubscriptionName 
 
 . 
 of 
 ( 
 projectId 
 , 
  
 subscriptionId 
 ); 
  
  MessageReceiver 
 
  
 messageHandler 
  
 = 
  
 ( 
 PubsubMessage 
  
 pubsubMessage 
 , 
  
 AckReplyConsumer 
  
 ackReplyConsumer 
 ) 
  
 - 
>  
 { 
  
 handleMessage 
 ( 
 dlpJob 
 , 
  
 done 
 , 
  
 pubsubMessage 
 , 
  
 ackReplyConsumer 
 ); 
  
 }; 
  
  Subscriber 
 
  
 subscriber 
  
 = 
  
  Subscriber 
 
 . 
 newBuilder 
 ( 
 subscriptionName 
 , 
  
 messageHandler 
 ). 
 build 
 (); 
  
 subscriber 
 . 
  startAsync 
 
 (); 
  
 // Wait for job completion semi-synchronously 
  
 // For long jobs, consider using a truly asynchronous execution model such as Cloud Functions 
  
 try 
  
 { 
  
 done 
 . 
 get 
 ( 
 15 
 , 
  
 TimeUnit 
 . 
 MINUTES 
 ); 
  
 } 
  
 catch 
  
 ( 
 TimeoutException 
  
 e 
 ) 
  
 { 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "Job was not completed after 15 minutes." 
 ); 
  
 return 
 ; 
  
 } 
  
 finally 
  
 { 
  
 subscriber 
 . 
 stopAsync 
 (); 
  
 subscriber 
 . 
 awaitTerminated 
 (); 
  
 } 
  
 // Build a request to get the completed job 
  
  GetDlpJobRequest 
 
  
 getDlpJobRequest 
  
 = 
  
  GetDlpJobRequest 
 
 . 
 newBuilder 
 (). 
 setName 
 ( 
 dlpJob 
 . 
  getName 
 
 ()). 
 build 
 (); 
  
 // Retrieve completed job status 
  
  DlpJob 
 
  
 completedJob 
  
 = 
  
 dlpServiceClient 
 . 
 getDlpJob 
 ( 
 getDlpJobRequest 
 ); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "Job status: " 
  
 + 
  
 completedJob 
 . 
  getState 
 
 ()); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "Job name: " 
  
 + 
  
 dlpJob 
 . 
  getName 
 
 ()); 
  
 // Get the result and parse through and process the information 
  
  LDiversityResult 
 
  
 ldiversityResult 
  
 = 
  
 completedJob 
 . 
  getRiskDetails 
 
 (). 
 getLDiversityResult 
 (); 
  
 List<LDiversityHistogramBucket> 
  
 histogramBucketList 
  
 = 
  
 ldiversityResult 
 . 
 getSensitiveValueFrequencyHistogramBucketsList 
 (); 
  
 for 
  
 ( 
  LDiversityHistogramBucket 
 
  
 result 
  
 : 
  
 histogramBucketList 
 ) 
  
 { 
  
 for 
  
 ( 
  LDiversityEquivalenceClass 
 
  
 bucket 
  
 : 
  
 result 
 . 
 getBucketValuesList 
 ()) 
  
 { 
  
 List<String> 
  
 quasiIdValues 
  
 = 
  
 bucket 
 . 
 getQuasiIdsValuesList 
 (). 
 stream 
 () 
  
 . 
 map 
 ( 
 Value 
 :: 
 toString 
 ) 
  
 . 
 collect 
 ( 
 Collectors 
 . 
 toList 
 ()); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\tQuasi-ID values: " 
  
 + 
  
 String 
 . 
 join 
 ( 
 ", " 
 , 
  
 quasiIdValues 
 )); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\tClass size: " 
  
 + 
  
 bucket 
 . 
 getEquivalenceClassSize 
 ()); 
  
 for 
  
 ( 
  ValueFrequency 
 
  
 valueFrequency 
  
 : 
  
 bucket 
 . 
 getTopSensitiveValuesList 
 ()) 
  
 { 
  
 System 
 . 
 out 
 . 
 printf 
 ( 
  
 "\t\tSensitive value %s occurs %d time(s).\n" 
 , 
  
 valueFrequency 
 . 
 getValue 
 (). 
 toString 
 (), 
  
 valueFrequency 
 . 
 getCount 
 ()); 
  
 } 
  
 } 
  
 } 
  
 } 
  
 } 
  
 // handleMessage injects the job and settableFuture into the message reciever interface 
  
 private 
  
 static 
  
 void 
  
 handleMessage 
 ( 
  
  DlpJob 
 
  
 job 
 , 
  
 SettableApiFuture<Boolean> 
  
 done 
 , 
  
  PubsubMessage 
 
  
 pubsubMessage 
 , 
  
  AckReplyConsumer 
 
  
 ackReplyConsumer 
 ) 
  
 { 
  
 String 
  
 messageAttribute 
  
 = 
  
 pubsubMessage 
 . 
  getAttributesMap 
 
 (). 
 get 
 ( 
 "DlpJobName" 
 ); 
  
 if 
  
 ( 
 job 
 . 
  getName 
 
 (). 
 equals 
 ( 
 messageAttribute 
 )) 
  
 { 
  
 done 
 . 
 set 
 ( 
 true 
 ); 
  
  ack 
 
ReplyConsumer . 
  ack 
 
 (); 
  
 } 
  
 else 
  
 { 
  
 ackReplyConsumer 
 . 
  nack 
 
 (); 
  
 } 
  
 } 
 } 
 

Node.js

To learn how to install and use the client library for Sensitive Data Protection, see Sensitive Data Protection client libraries .

To authenticate to Sensitive Data Protection, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  // Import the Google Cloud client libraries 
 const 
  
 DLP 
  
 = 
  
 require 
 ( 
 ' @google-cloud/dlp 
' 
 ); 
 const 
  
 { 
 PubSub 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/pubsub 
' 
 ); 
 // Instantiates clients 
 const 
  
 dlp 
  
 = 
  
 new 
  
 DLP 
 . 
  DlpServiceClient 
 
 (); 
 const 
  
 pubsub 
  
 = 
  
 new 
  
  PubSub 
 
 (); 
 // The project ID to run the API call under 
 // const projectId = 'my-project'; 
 // The project ID the table is stored under 
 // This may or (for public datasets) may not equal the calling project ID 
 // const tableProjectId = 'my-project'; 
 // The ID of the dataset to inspect, e.g. 'my_dataset' 
 // const datasetId = 'my_dataset'; 
 // The ID of the table to inspect, e.g. 'my_table' 
 // const tableId = 'my_table'; 
 // The name of the Pub/Sub topic to notify once the job completes 
 // TODO(developer): create a Pub/Sub topic to use for this 
 // const topicId = 'MY-PUBSUB-TOPIC' 
 // The name of the Pub/Sub subscription to use when listening for job 
 // completion notifications 
 // TODO(developer): create a Pub/Sub subscription to use for this 
 // const subscriptionId = 'MY-PUBSUB-SUBSCRIPTION' 
 // The column to measure l-diversity relative to, e.g. 'firstName' 
 // const sensitiveAttribute = 'name'; 
 // A set of columns that form a composite key ('quasi-identifiers') 
 // const quasiIds = [{ name: 'age' }, { name: 'city' }]; 
 async 
  
 function 
  
 lDiversityAnalysis 
 () 
  
 { 
  
 const 
  
 sourceTable 
  
 = 
  
 { 
  
 projectId 
 : 
  
 tableProjectId 
 , 
  
 datasetId 
 : 
  
 datasetId 
 , 
  
 tableId 
 : 
  
 tableId 
 , 
  
 }; 
  
 // Construct request for creating a risk analysis job 
  
 const 
  
 request 
  
 = 
  
 { 
  
 parent 
 : 
  
 `projects/ 
 ${ 
 projectId 
 } 
 /locations/global` 
 , 
  
 riskJob 
 : 
  
 { 
  
 privacyMetric 
 : 
  
 { 
  
 lDiversityConfig 
 : 
  
 { 
  
 quasiIds 
 : 
  
 quasiIds 
 , 
  
 sensitiveAttribute 
 : 
  
 { 
  
 name 
 : 
  
 sensitiveAttribute 
 , 
  
 }, 
  
 }, 
  
 }, 
  
 sourceTable 
 : 
  
 sourceTable 
 , 
  
 actions 
 : 
  
 [ 
  
 { 
  
 pubSub 
 : 
  
 { 
  
 topic 
 : 
  
 `projects/ 
 ${ 
 projectId 
 } 
 /topics/ 
 ${ 
 topicId 
 } 
 ` 
 , 
  
 }, 
  
 }, 
  
 ], 
  
 }, 
  
 }; 
  
 // Create helper function for unpacking values 
  
 const 
  
 getValue 
  
 = 
  
 obj 
  
 = 
>  
 obj 
 [ 
 Object 
 . 
 keys 
 ( 
 obj 
 )[ 
 0 
 ]]; 
  
 // Run risk analysis job 
  
 const 
  
 [ 
 topicResponse 
 ] 
  
 = 
  
 await 
  
 pubsub 
 . 
 topic 
 ( 
 topicId 
 ). 
 get 
 (); 
  
 const 
  
 subscription 
  
 = 
  
 await 
  
 topicResponse 
 . 
 subscription 
 ( 
 subscriptionId 
 ); 
  
 const 
  
 [ 
 jobsResponse 
 ] 
  
 = 
  
 await 
  
 dlp 
 . 
 createDlpJob 
 ( 
 request 
 ); 
  
 const 
  
 jobName 
  
 = 
  
 jobsResponse 
 . 
 name 
 ; 
  
 console 
 . 
 log 
 ( 
 `Job created. Job name: 
 ${ 
 jobName 
 } 
 ` 
 ); 
  
 // Watch the Pub/Sub topic until the DLP job finishes 
  
 await 
  
 new 
  
  Promise 
 
 (( 
 resolve 
 , 
  
 reject 
 ) 
  
 = 
>  
 { 
  
 const 
  
 messageHandler 
  
 = 
  
 message 
  
 = 
>  
 { 
  
 if 
  
 ( 
 message 
 . 
 attributes 
 && 
 message 
 . 
 attributes 
 . 
 DlpJobName 
  
 === 
  
 jobName 
 ) 
  
 { 
  
 message 
 . 
 ack 
 (); 
  
 subscription 
 . 
 removeListener 
 ( 
 'message' 
 , 
  
 messageHandler 
 ); 
  
 subscription 
 . 
 removeListener 
 ( 
 'error' 
 , 
  
 errorHandler 
 ); 
  
 resolve 
 ( 
 jobName 
 ); 
  
 } 
  
 else 
  
 { 
  
 message 
 . 
 nack 
 (); 
  
 } 
  
 }; 
  
 const 
  
 errorHandler 
  
 = 
  
 err 
  
 = 
>  
 { 
  
 subscription 
 . 
 removeListener 
 ( 
 'message' 
 , 
  
 messageHandler 
 ); 
  
 subscription 
 . 
 removeListener 
 ( 
 'error' 
 , 
  
 errorHandler 
 ); 
  
 reject 
 ( 
 err 
 ); 
  
 }; 
  
 subscripti on 
 
 . 
  on 
 
 ( 
 'message' 
 , 
  
 messageHandler 
 ); 
  
 subscripti on 
 
 . 
  on 
 
 ( 
 'error' 
 , 
  
 errorHandler 
 ); 
  
 }); 
  
 setTimeout 
 (() 
  
 = 
>  
 { 
  
 console 
 . 
 log 
 ( 
 ' Waiting for DLP job to fully complete' 
 ); 
  
 }, 
  
 500 
 ); 
  
 const 
  
 [ 
 job 
 ] 
  
 = 
  
 await 
  
 dlp 
 . 
 getDlpJob 
 ({ 
 name 
 : 
  
 jobName 
 }); 
  
 const 
  
 histogramBuckets 
  
 = 
  
 job 
 . 
 riskDetails 
 . 
 lDiversityResult 
 . 
 sensitiveValueFrequencyHistogramBuckets 
 ; 
  
 histogramBuckets 
 . 
 forEach 
 (( 
 histogramBucket 
 , 
  
 histogramBucketIdx 
 ) 
  
 = 
>  
 { 
  
 console 
 . 
 log 
 ( 
 `Bucket 
 ${ 
 histogramBucketIdx 
 } 
 :` 
 ); 
  
 console 
 . 
 log 
 ( 
  
 `Bucket size range: [ 
 ${ 
 histogramBucket 
 . 
 sensitiveValueFrequencyLowerBound 
 } 
 , 
 ${ 
 histogramBucket 
 . 
 sensitiveValueFrequencyUpperBound 
 } 
 ]` 
  
 ); 
  
 histogramBucket 
 . 
 bucketValues 
 . 
 forEach 
 ( 
 valueBucket 
  
 = 
>  
 { 
  
 const 
  
 quasiIdValues 
  
 = 
  
 valueBucket 
 . 
 quasiIdsValues 
  
 . 
 map 
 ( 
 getValue 
 ) 
  
 . 
 join 
 ( 
 ', ' 
 ); 
  
 console 
 . 
 log 
 ( 
 `  Quasi-ID values: { 
 ${ 
 quasiIdValues 
 } 
 }` 
 ); 
  
 console 
 . 
 log 
 ( 
 `  Class size: 
 ${ 
 valueBucket 
 . 
 equivalenceClassSize 
 } 
 ` 
 ); 
  
 valueBucket 
 . 
 topSensitiveValues 
 . 
 forEach 
 ( 
 valueObj 
  
 = 
>  
 { 
  
 console 
 . 
 log 
 ( 
  
 `    Sensitive value 
 ${ 
 getValue 
 ( 
 valueObj 
 . 
 value 
 ) 
 } 
 occurs 
 ${ 
  
 valueObj 
 . 
 count 
  
 } 
 time(s).` 
  
 ); 
  
 }); 
  
 }); 
  
 }); 
 } 
 await 
  
 lDiversityAnalysis 
 (); 
 

PHP

To learn how to install and use the client library for Sensitive Data Protection, see Sensitive Data Protection client libraries .

To authenticate to Sensitive Data Protection, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  use Google\Cloud\Dlp\V2\Action; 
 use Google\Cloud\Dlp\V2\Action\PublishToPubSub; 
 use Google\Cloud\Dlp\V2\BigQueryTable; 
 use Google\Cloud\Dlp\V2\Client\DlpServiceClient; 
 use Google\Cloud\Dlp\V2\CreateDlpJobRequest; 
 use Google\Cloud\Dlp\V2\DlpJob\JobState; 
 use Google\Cloud\Dlp\V2\FieldId; 
 use Google\Cloud\Dlp\V2\GetDlpJobRequest; 
 use Google\Cloud\Dlp\V2\PrivacyMetric; 
 use Google\Cloud\Dlp\V2\PrivacyMetric\LDiversityConfig; 
 use Google\Cloud\Dlp\V2\RiskAnalysisJobConfig; 
 use Google\Cloud\PubSub\PubSubClient; 
 /** 
 * Computes the l-diversity of a column set in a Google BigQuery table. 
 * 
 * @param string    $callingProjectId    The project ID to run the API call under 
 * @param string    $dataProjectId       The project ID containing the target Datastore 
 * @param string    $topicId             The name of the Pub/Sub topic to notify once the job completes 
 * @param string    $subscriptionId      The name of the Pub/Sub subscription to use when listening for job 
 * @param string    $datasetId           The ID of the dataset to inspect 
 * @param string    $tableId             The ID of the table to inspect 
 * @param string    $sensitiveAttribute  The column to measure l-diversity relative to, e.g. "firstName" 
 * @param string[]  $quasiIdNames        Array columns that form a composite key (quasi-identifiers) 
 */ 
 function l_diversity( 
 string $callingProjectId, 
 string $dataProjectId, 
 string $topicId, 
 string $subscriptionId, 
 string $datasetId, 
 string $tableId, 
 string $sensitiveAttribute, 
 array $quasiIdNames 
 ): void { 
 // Instantiate a client. 
 $dlp = new DlpServiceClient(); 
 $pubsub = new PubSubClient(); 
 $topic = $pubsub->topic($topicId); 
 // Construct risk analysis config 
 $quasiIds = array_map( 
 function ($id) { 
 return (new FieldId())->setName($id); 
 }, 
 $quasiIdNames 
 ); 
 $sensitiveField = (new FieldId()) 
 ->setName($sensitiveAttribute); 
 $statsConfig = (new LDiversityConfig()) 
 ->setQuasiIds($quasiIds) 
 ->setSensitiveAttribute($sensitiveField); 
 $privacyMetric = (new PrivacyMetric()) 
 ->setLDiversityConfig($statsConfig); 
 // Construct items to be analyzed 
 $bigqueryTable = (new BigQueryTable()) 
 ->setProjectId($dataProjectId) 
 ->setDatasetId($datasetId) 
 ->setTableId($tableId); 
 // Construct the action to run when job completes 
 $pubSubAction = (new PublishToPubSub()) 
 ->setTopic($topic->name()); 
 $action = (new Action()) 
 ->setPubSub($pubSubAction); 
 // Construct risk analysis job config to run 
 $riskJob = (new RiskAnalysisJobConfig()) 
 ->setPrivacyMetric($privacyMetric) 
 ->setSourceTable($bigqueryTable) 
 ->setActions([$action]); 
 // Listen for job notifications via an existing topic/subscription. 
 $subscription = $topic->subscription($subscriptionId); 
 // Submit request 
 $parent = "projects/$callingProjectId/locations/global"; 
 $createDlpJobRequest = (new CreateDlpJobRequest()) 
 ->setParent($parent) 
 ->setRiskJob($riskJob); 
 $job = $dlp->createDlpJob($createDlpJobRequest); 
 // Poll Pub/Sub using exponential backoff until job finishes 
 // Consider using an asynchronous execution model such as Cloud Functions 
 $attempt = 1; 
 $startTime = time(); 
 do { 
 foreach ($subscription->pull() as $message) { 
 if ( 
 isset($message->attributes()['DlpJobName']) 
&& $message->attributes()['DlpJobName'] === $job->getName() 
 ) { 
 $subscription->acknowledge($message); 
 // Get the updated job. Loop to avoid race condition with DLP API. 
 do { 
 $getDlpJobRequest = (new GetDlpJobRequest()) 
 ->setName($job->getName()); 
 $job = $dlp->getDlpJob($getDlpJobRequest); 
 } while ($job->getState() == JobState::RUNNING); 
 break 2; // break from parent do while 
 } 
 } 
 print('Waiting for job to complete' . PHP_EOL); 
 // Exponential backoff with max delay of 60 seconds 
 sleep(min(60, pow(2, ++$attempt))); 
 } while (time() - $startTime < 600); // 10 minute timeout 
 // Print finding counts 
 printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState())); 
 switch ($job->getState()) { 
 case JobState::DONE: 
 $histBuckets = $job->getRiskDetails()->getLDiversityResult()->getSensitiveValueFrequencyHistogramBuckets(); 
 foreach ($histBuckets as $bucketIndex => $histBucket) { 
 // Print bucket stats 
 printf('Bucket %s:' . PHP_EOL, $bucketIndex); 
 printf( 
 '  Bucket size range: [%s, %s]' . PHP_EOL, 
 $histBucket->getSensitiveValueFrequencyLowerBound(), 
 $histBucket->getSensitiveValueFrequencyUpperBound() 
 ); 
 // Print bucket values 
 foreach ($histBucket->getBucketValues() as $percent => $valueBucket) { 
 printf( 
 '  Class size: %s' . PHP_EOL, 
 $valueBucket->getEquivalenceClassSize() 
 ); 
 // Pretty-print quasi-ID values 
 print('  Quasi-ID values:' . PHP_EOL); 
 foreach ($valueBucket->getQuasiIdsValues() as $index => $value) { 
 print('    ' . $value->serializeToJsonString() . PHP_EOL); 
 } 
 // Pretty-print sensitive values 
 $topValues = $valueBucket->getTopSensitiveValues(); 
 foreach ($topValues as $topValue) { 
 printf( 
 '  Sensitive value %s occurs %s time(s).' . PHP_EOL, 
 $topValue->getValue()->serializeToJsonString(), 
 $topValue->getCount() 
 ); 
 } 
 } 
 } 
 break; 
 case JobState::FAILED: 
 printf('Job %s had errors:' . PHP_EOL, $job->getName()); 
 $errors = $job->getErrors(); 
 foreach ($errors as $error) { 
 var_dump($error->getDetails()); 
 } 
 break; 
 case JobState::PENDING: 
 print('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL); 
 break; 
 default: 
 print('Unexpected job state. Most likely, the job is either running or has not yet started.'); 
 } 
 } 
 

Python

To learn how to install and use the client library for Sensitive Data Protection, see Sensitive Data Protection client libraries .

To authenticate to Sensitive Data Protection, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  import 
  
 concurrent.futures 
 from 
  
 typing 
  
 import 
 List 
 import 
  
 google.cloud.dlp 
 from 
  
 google.cloud.dlp_v2 
  
 import 
 types 
 import 
  
 google.cloud.pubsub 
 def 
  
 l_diversity_analysis 
 ( 
 project 
 : 
 str 
 , 
 table_project_id 
 : 
 str 
 , 
 dataset_id 
 : 
 str 
 , 
 table_id 
 : 
 str 
 , 
 topic_id 
 : 
 str 
 , 
 subscription_id 
 : 
 str 
 , 
 sensitive_attribute 
 : 
 str 
 , 
 quasi_ids 
 : 
 List 
 [ 
 str 
 ], 
 timeout 
 : 
 int 
 = 
 300 
 , 
 ) 
 - 
> None 
 : 
  
 """Uses the Data Loss Prevention API to compute the l-diversity of a 
 column set in a Google BigQuery table. 
 Args: 
 project: The Google Cloud project id to use as a parent resource. 
 table_project_id: The Google Cloud project id where the BigQuery table 
 is stored. 
 dataset_id: The id of the dataset to inspect. 
 table_id: The id of the table to inspect. 
 topic_id: The name of the Pub/Sub topic to notify once the job 
 completes. 
 subscription_id: The name of the Pub/Sub subscription to use when 
 listening for job completion notifications. 
 sensitive_attribute: The column to measure l-diversity relative to. 
 quasi_ids: A set of columns that form a composite key. 
 timeout: The number of seconds to wait for a response from the API. 
 Returns: 
 None; the response from the API is printed to the terminal. 
 """ 
 # Create helper function for unpacking values 
 def 
  
 get_values 
 ( 
 obj 
 : 
 types 
 . 
  Value 
 
 ) 
 - 
> int 
 : 
 return 
 int 
 ( 
 obj 
 . 
 integer_value 
 ) 
 # Instantiate a client. 
 dlp 
 = 
 google 
 . 
 cloud 
 . 
  dlp_v2 
 
 . 
  DlpServiceClient 
 
 () 
 # Convert the project id into a full resource id. 
 topic 
 = 
 google 
 . 
 cloud 
 . 
 pubsub 
 . 
  PublisherClient 
 
 . 
 topic_path 
 ( 
 project 
 , 
 topic_id 
 ) 
 parent 
 = 
 f 
 "projects/ 
 { 
 project 
 } 
 /locations/global" 
 # Location info of the BigQuery table. 
 source_table 
 = 
 { 
 "project_id" 
 : 
 table_project_id 
 , 
 "dataset_id" 
 : 
 dataset_id 
 , 
 "table_id" 
 : 
 table_id 
 , 
 } 
 # Convert quasi id list to Protobuf type 
 def 
  
 map_fields 
 ( 
 field 
 : 
 str 
 ) 
 - 
> dict 
 : 
 return 
 { 
 "name" 
 : 
 field 
 } 
 quasi_ids 
 = 
 map 
 ( 
 map_fields 
 , 
 quasi_ids 
 ) 
 # Tell the API where to send a notification when the job is complete. 
 actions 
 = 
 [{ 
 "pub_sub" 
 : 
 { 
 "topic" 
 : 
 topic 
 }}] 
 # Configure risk analysis job 
 # Give the name of the numeric column to compute risk metrics for 
 risk_job 
 = 
 { 
 "privacy_metric" 
 : 
 { 
 "l_diversity_config" 
 : 
 { 
 "quasi_ids" 
 : 
 quasi_ids 
 , 
 "sensitive_attribute" 
 : 
 { 
 "name" 
 : 
 sensitive_attribute 
 }, 
 } 
 }, 
 "source_table" 
 : 
 source_table 
 , 
 "actions" 
 : 
 actions 
 , 
 } 
 # Call API to start risk analysis job 
 operation 
 = 
 dlp 
 . 
 create_dlp_job 
 ( 
 request 
 = 
 { 
 "parent" 
 : 
 parent 
 , 
 "risk_job" 
 : 
 risk_job 
 }) 
 def 
  
 callback 
 ( 
 message 
 : 
 google 
 . 
 cloud 
 . 
 pubsub_v1 
 . 
 subscriber 
 . 
 message 
 . 
  Message 
 
 ) 
 - 
> None 
 : 
 if 
 message 
 . 
  attributes 
 
 [ 
 "DlpJobName" 
 ] 
 == 
 operation 
 . 
 name 
 : 
 # This is the message we're looking for, so acknowledge it. 
 message 
 . 
  ack 
 
 () 
 # Now that the job is done, fetch the results and print them. 
 job 
 = 
 dlp 
 . 
 get_dlp_job 
 ( 
 request 
 = 
 { 
 "name" 
 : 
 operation 
 . 
 name 
 }) 
 print 
 ( 
 f 
 "Job name: 
 { 
 job 
 . 
 name 
 } 
 " 
 ) 
 histogram_buckets 
 = 
 ( 
 job 
 . 
 risk_details 
 . 
 l_diversity_result 
 . 
 sensitive_value_frequency_histogram_buckets 
 # noqa: E501 
 ) 
 # Print bucket stats 
 for 
 i 
 , 
 bucket 
 in 
 enumerate 
 ( 
 histogram_buckets 
 ): 
 print 
 ( 
 f 
 "Bucket 
 { 
 i 
 } 
 :" 
 ) 
 print 
 ( 
 "   Bucket size range: [ 
 {} 
 , 
 {} 
 ]" 
 . 
 format 
 ( 
 bucket 
 . 
 sensitive_value_frequency_lower_bound 
 , 
 bucket 
 . 
 sensitive_value_frequency_upper_bound 
 , 
 ) 
 ) 
 for 
 value_bucket 
 in 
 bucket 
 . 
 bucket_values 
 : 
 print 
 ( 
 "   Quasi-ID values: 
 {} 
 " 
 . 
 format 
 ( 
 map 
 ( 
 get_values 
 , 
 value_bucket 
 . 
 quasi_ids_values 
 ) 
 ) 
 ) 
 print 
 ( 
 f 
 "   Class size: 
 { 
 value_bucket 
 . 
 equivalence_class_size 
 } 
 " 
 ) 
 for 
 value 
 in 
 value_bucket 
 . 
 top_sensitive_values 
 : 
 print 
 ( 
 "   Sensitive value 
 {} 
 occurs 
 {} 
 time(s)" 
 . 
 format 
 ( 
 value 
 . 
 value 
 , 
 value 
 . 
 count 
 ) 
 ) 
 subscription 
 . 
 set_result 
 ( 
 None 
 ) 
 else 
 : 
 # This is not the message we're looking for. 
 message 
 . 
  drop 
 
 () 
 # Create a Pub/Sub client and find the subscription. The subscription is 
 # expected to already be listening to the topic. 
 subscriber 
 = 
 google 
 . 
 cloud 
 . 
 pubsub 
 . 
  SubscriberClient 
 
 () 
 subscription_path 
 = 
 subscriber 
 . 
 subscription_path 
 ( 
 project 
 , 
 subscription_id 
 ) 
 subscription 
 = 
  subscribe 
 
r . 
  subscribe 
 
 ( 
 subscription_path 
 , 
 callback 
 ) 
 try 
 : 
 subscription 
 . 
 result 
 ( 
 timeout 
 = 
 timeout 
 ) 
 except 
 concurrent 
 . 
 futures 
 . 
 TimeoutError 
 : 
 print 
 ( 
 "No event received before the timeout. Please verify that the " 
 "subscription provided is subscribed to the topic provided." 
 ) 
 subscription 
 . 
  close 
 
 () 
 

REST

To run a new risk analysis job to compute l -diversity, send a request to the projects.dlpJobs resource, where PROJECT_ID indicates your project identifier :

https://dlp.googleapis.com/v2/projects/ PROJECT_ID 
/dlpJobs

The request contains a RiskAnalysisJobConfig object, which is composed of the following:

  • A PrivacyMetric object. This is where you specify that you're calculating l -diversity by including an LDiversityConfig object.

  • A BigQueryTable object. Specify the BigQuery table to scan by including all of the following:

    • projectId : The project ID of the project containing the table.
    • datasetId : The dataset ID of the table.
    • tableId : The name of the table.
  • A set of one or more Action objects, which represent actions to run, in the order given, at the completion of the job. Each Action object can contain one of the following actions:

    Within the LDiversityConfig object, you specify the following:

    • quasiIds[] : A set of quasi-identifiers ( FieldId objects) that indicate how equivalence classes are defined for the l -diversity computation. As with KAnonymityConfig , when you specify multiple fields, they are considered a single composite key.
    • sensitiveAttribute : Sensitive field ( FieldId object) for computing the l -diversity value.

As soon as you send a request to the DLP API, it starts the risk analysis job.

List completed risk analysis jobs

You can view a list of the risk analysis jobs that have been run in the current project.

Console

To list running and previously run risk analysis jobs in the Google Cloud console, do the following:

  1. In the Google Cloud console, open Sensitive Data Protection.

    Go to Sensitive Data Protection

  2. Click the Jobs & job triggerstab at the top of the page.

  3. Click the Risk jobstab.

The risk job listing appears.

Protocol

To list running and previously run risk analysis jobs, send a GET request to the projects.dlpJobs resource. Adding a job type filter ( ?type=RISK_ANALYSIS_JOB ) narrows the response to only risk analysis jobs.

https://dlp.googleapis.com/v2/projects/ PROJECT_ID 
/dlpJobs?type=RISK_ANALYSIS_JOB

The response you receive contains a JSON representation of all current and previous risk analysis jobs.

View l-diversity job results

Sensitive Data Protection in the Google Cloud console features built-in visualizations for completed l -diversity jobs. After following the instructions in the previous section, from the risk analysis job listing, select the job for which you want to view results. Assuming the job has run successfully, the top of the Risk analysis detailspage looks like this:

At the top of the page is information about the l -diversity risk job, including its job ID and, under Container, its resource location.

To view the results of the l -diversity calculation, click the L-diversitytab. To view the risk analysis job's configuration, click the Configurationtab.

The L-diversitytab first lists the sensitive value and the quasi-identifiers used to calculate l -diversity.

Risk chart

The Re-identification riskchart plots, on the y -axis, the potential percentage of data loss for both unique rows and unique quasi-identifier combinations to achieve, on the x -axis, an l -diversity value. The chart's color also indicates risk potential. Darker shades of blue indicate a higher risk, while lighter shades indicate less risk.

Higher l -diversity values indicate less diversity of values, which can make a dataset less re-identifiable and more secure. To achieve higher l -diversity values, however, you would need to remove higher percentages of the total rows and higher unique quasi-identifier combinations, which might decrease the utility of the data. To see a specific potential percentage loss value for a certain l -diversity value, hover your cursor over the chart. As shown in the screenshot, a tooltip appears on the chart.

To view more detail about a specific l -diversity value, click the corresponding data point. A detailed explanation is shown under the chart and a sample data table appears further down the page.

Risk sample data table

The second component to the risk job results page is the sample data table. It displays quasi-identifier combinations for a given target l -diversity value.

The first column of the table lists the k-anonymity values. Click an l -diversity value to view corresponding sample data that would need to be dropped to achieve that value.

The second column displays the respective potential data loss of unique rows and quasi-identifier combinations to achieve the selected l -diversity value, as well as the number of groups with at least l sensitive attributes and the total number of records.

The last column displays a sample of groups that share a quasi-identifier combination, along with the number of records that exist for that combination.

Retrieve job details using REST

To retrieve the results of the l -diversity risk analysis job using the REST API, send the following GET request to the projects.dlpJobs resource. Replace PROJECT_ID with your project ID and JOB_ID with the identifier of the job you want to obtain results for. The job ID was returned when you started the job, and can also be retrieved by listing all jobs .

GET https://dlp.googleapis.com/v2/projects/ PROJECT_ID 
/dlpJobs/ JOB_ID 

The request returns a JSON object containing an instance of the job. The results of the analysis are inside the "riskDetails" key, in an AnalyzeDataSourceRiskDetails object. For more information, see the API reference for the DlpJob resource.

What's next

  • Learn how to calculate the k -anonymity value for a dataset.
  • Learn how to calculate the k -map value for a dataset.
  • Learn how to calculate the δ -presence value for a dataset.
Design a Mobile Site
View Site in Mobile | Classic
Share by: