Retrieval-augmented generation (RAG) is a technique that's used to retrieve and provide relevant information to LLMs to generate verifiable responses. The information can include fresh information, a topic and context, or ground truth.
This page shows you how to use Vertex AI RAG Engine with the Gemini Live API , which lets you specify and retrieve information from the RAG corpus.
Prerequisites
The following prerequisites must be completed before you can use Vertex AI RAG Engine with the multimodal Live API:
-  Enable the RAG API in Vertex AI. 
-  To upload files to the RAG Corpus, see Import RAG files example API . 
Set up
You can use Vertex AI RAG Engine with the Live API by specifying Vertex AI RAG Engine as a tool. The following code sample demonstrates how to specify Vertex AI RAG Engine as a tool:
Replace the following variables:
- YOUR_PROJECT_ID : The ID of your Google Cloud project.
- YOUR_CORPUS_ID : The ID of your corpus.
- YOUR_LOCATION : The region to process the request.
  PROJECT_ID 
 = 
 " YOUR_PROJECT_ID 
" 
 RAG_CORPUS_ID 
 = 
 " YOUR_CORPUS_ID 
" 
 LOCATION 
 = 
 " YOUR_LOCATION 
" 
 TOOLS 
 = 
 { 
 "retrieval" 
 : 
 { 
 "vertex_rag_store" 
 : 
 { 
 "rag_resources" 
 : 
 { 
 "rag_corpus" 
 : 
 "projects/$ 
 {PROJECT_ID} 
 /locations/$ 
 {LOCATION} 
 /ragCorpora/$ 
 {RAG_CORPUS_ID} 
 " 
 } 
 } 
 } 
 } 
 
 
Use Websocket 
for real-time communication
 
 To enable real-time communication between a client and a server, you must use a Websocket 
. These code samples demonstrate how to use a Websocket 
using the
Python API and the Python SDK.
Python API
  CONFIG 
 = 
 { 
 "response_modalities" 
 : 
 [ 
 "TEXT" 
 ], 
 "speech_config" 
 : 
 { 
 "language_code" 
 : 
 "en-US" 
 }} 
 headers 
 = 
 { 
 "Content-Type" 
 : 
 "application/json" 
 , 
 "Authorization" 
 : 
 f 
 "Bearer 
 { 
 bearer_token 
 [ 
 0 
 ] 
 } 
 " 
 , 
 } 
 HOST 
 = 
 "$ 
 {LOCATION} 
 -aiplatform.googleapis.com" 
 SERVICE_URL 
 = 
 f 
 "wss:// 
 { 
 HOST 
 } 
 /ws/google.cloud.aiplatform.v1beta1.LlmBidiService/BidiGenerateContent" 
 MODEL 
 = 
 "gemini-2.0-flash-exp" 
 # Connect to the server 
 async 
 with 
 connect 
 ( 
 SERVICE_URL 
 , 
 additional_headers 
 = 
 headers 
 ) 
 as 
 ws 
 : 
 # Setup the session 
 await 
 ws 
 . 
 send 
 ( 
 json 
 . 
 dumps 
 ( 
 { 
 "setup" 
 : 
 { 
 "model" 
 : 
 MODEL 
 , 
 "generation_config" 
 : 
 CONFIG 
 , 
 # Setup RAG as a retrieval tool 
 "tools" 
 : 
 TOOLS 
 , 
 } 
 } 
 ) 
 ) 
 # Receive setup response 
 raw_response 
 = 
 await 
 ws 
 . 
 recv 
 ( 
 decode 
 = 
 False 
 ) 
 setup_response 
 = 
 json 
 . 
 loads 
 ( 
 raw_response 
 . 
 decode 
 ( 
 "ascii" 
 )) 
 # Send text message 
 text_input 
 = 
 "What are popular LLMs?" 
 display 
 ( 
 Markdown 
 ( 
 f 
 "**Input:** 
 { 
 text_input 
 } 
 " 
 )) 
 msg 
 = 
 { 
 "client_content" 
 : 
 { 
 "turns" 
 : 
 [{ 
 "role" 
 : 
 "user" 
 , 
 "parts" 
 : 
 [{ 
 "text" 
 : 
 text_input 
 }]}], 
 "turn_complete" 
 : 
 True 
 , 
 } 
 } 
 await 
 ws 
 . 
 send 
 ( 
 json 
 . 
 dumps 
 ( 
 msg 
 )) 
 responses 
 = 
 [] 
 # Receive chunks of server response 
 async 
 for 
 raw_response 
 in 
 ws 
 : 
 response 
 = 
 json 
 . 
 loads 
 ( 
 raw_response 
 . 
 decode 
 ()) 
 server_content 
 = 
 response 
 . 
 pop 
 ( 
 "serverContent" 
 , 
 None 
 ) 
 if 
 server_content 
 is 
 None 
 : 
 break 
 model_turn 
 = 
 server_content 
 . 
 pop 
 ( 
 "modelTurn" 
 , 
 None 
 ) 
 if 
 model_turn 
 is 
 not 
 None 
 : 
 parts 
 = 
 model_turn 
 . 
 pop 
 ( 
 "parts" 
 , 
 None 
 ) 
 if 
 parts 
 is 
 not 
 None 
 : 
 display 
 ( 
 Markdown 
 ( 
 f 
 "**parts >** 
 { 
 parts 
 } 
 " 
 )) 
 responses 
 . 
 append 
 ( 
 parts 
 [ 
 0 
 ][ 
 "text" 
 ]) 
 # End of turn 
 turn_complete 
 = 
 server_content 
 . 
 pop 
 ( 
 "turnComplete" 
 , 
 None 
 ) 
 if 
 turn_complete 
 : 
 grounding_metadata 
 = 
 server_content 
 . 
 pop 
 ( 
 "groundingMetadata" 
 , 
 None 
 ) 
 if 
 grounding_metadata 
 is 
 not 
 None 
 : 
 grounding_chunks 
 = 
 grounding_metadata 
 . 
 pop 
 ( 
 "groundingChunks" 
 , 
 None 
 ) 
 if 
 grounding_chunks 
 is 
 not 
 None 
 : 
 for 
 chunk 
 in 
 grounding_chunks 
 : 
 display 
 ( 
 Markdown 
 ( 
 f 
 "**grounding_chunk >** 
 { 
 chunk 
 } 
 " 
 )) 
 break 
 # Print the server response 
 display 
 ( 
 Markdown 
 ( 
 f 
 "**Response >** 
 { 
 '' 
 . 
 join 
 ( 
 responses 
 ) 
 } 
 " 
 )) 
 
 
Python SDK
To learn how to install the generative AI SDK, see Install a library :
  from 
  
 google 
  
 import 
 genai 
 from 
  
 google.genai 
  
 import 
 types 
 from 
  
 google.genai.types 
  
 import 
 ( 
 Content 
 , 
 LiveConnectConfig 
 , 
 HttpOptions 
 , 
 Modality 
 , 
 Part 
 ,) 
 from 
  
 IPython 
  
 import 
 display 
 MODEL 
 = 
 "gemini-2.0-flash-exp" 
 client 
 = 
 genai 
 . 
 Client 
 ( 
 vertexai 
 = 
 True 
 , 
 project 
 = 
 PROJECT_ID 
 , 
 location 
 = 
 LOCATION 
 ) 
 async 
 with 
 client 
 . 
 aio 
 . 
 live 
 . 
 connect 
 ( 
 model 
 = 
 MODEL 
 , 
 config 
 = 
 LiveConnectConfig 
 ( 
 response_modalities 
 = 
 [ 
 Modality 
 . 
 TEXT 
 ], 
 tools 
 = 
 TOOLS 
 ), 
 ) 
 as 
 session 
 : 
 text_input 
 = 
 " 
 \' 
 What are core LLM techniques? 
 \' 
 " 
 print 
 ( 
 "> " 
 , 
 text_input 
 , 
 " 
 \n 
 " 
 ) 
 await 
 session 
 . 
 send_client_content 
 ( 
 turns 
 = 
 Content 
 ( 
 role 
 = 
 "user" 
 , 
 parts 
 = 
 [ 
 Part 
 ( 
 text 
 = 
 text_input 
 )]) 
 ) 
 async 
 for 
 message 
 in 
 session 
 . 
 receive 
 () 
 if 
 message 
 . 
 text 
 : 
 display 
 . 
 display 
 ( 
 display 
 . 
 Markdown 
 ( 
 message 
 . 
 text 
 )) 
 continue 
 
 
Use Vertex AI RAG Engine as the context store
You can use Vertex AI RAG Engine as the context store for Gemini Live API to store session context to form and retrieve past contexts that are related to your conversation and enrich the current context for model generation. You can also take advantage of this feature to share contexts across your different Live API sessions.
Vertex AI RAG Engine supports storing and indexing the following forms of data from session contexts:
- Text
- Audio speech
Create a MemoryCorpus type corpus
To store and index conversation texts from the session context, you must create
a RAG corpus of the MemoryCorpus 
type. You must also specify an LLM parser in
your memory corpus configuration that's used to parse session contexts stored
from the Live API to build memory for indexing.
This code sample demonstrates how to create a corpus. However, first replace the variables with values.
  # Currently supports Google first-party embedding models 
 EMBEDDING_MODEL 
 = 
  YOUR_EMBEDDING_MODEL 
 
 # Such as "publishers/google/models/text-embedding-005" 
 MEMORY_CORPUS_DISPLAY_NAME 
 = 
  YOUR_MEMORY_CORPUS_DISPLAY_NAME 
 
 LLM_PARSER_MODEL_NAME 
 = 
  YOUR_LLM_PARSER_MODEL_NAME 
 
 # Such as "projects/{project_id}/locations/{location}/publishers/google/models/gemini-2.5-pro-preview-05-06" 
 memory_corpus 
 = 
 rag 
 . 
 create_corpus 
 ( 
 display_name 
 = 
 MEMORY_CORPUS_DISPLAY_NAME 
 , 
 corpus_type_config 
 = 
 rag 
 . 
 RagCorpusTypeConfig 
 ( 
 corpus_type_config 
 = 
 rag 
 . 
 MemoryCorpus 
 ( 
 llm_parser 
 = 
 rag 
 . 
 LlmParserConfig 
 ( 
 model_name 
 = 
 LLM_PARSER_MODEL_NAME 
 , 
 ) 
 ) 
 ), 
 backend_config 
 = 
 rag 
 . 
 RagVectorDbConfig 
 ( 
 rag_embedding_model_config 
 = 
 rag 
 . 
 RagEmbeddingModelConfig 
 ( 
 vertex_prediction_endpoint 
 = 
 rag 
 . 
 VertexPredictionEndpoint 
 ( 
 publisher_model 
 = 
 EMBEDDING_MODEL 
 ) 
 ) 
 ), 
 ) 
 
 
Specify your memory corpus to store contexts
When using your memory corpus with the Live API, you must specify the memory
corpus as a retrieval tool and then set store_context 
to true 
to allow the
Live API to store the session contexts.
This code sample demonstrates how to specify your memory corpus to store contexts. However, first replace the variables with values.
  from 
  
 google 
  
 import 
 genai 
 from 
  
 google.genai 
  
 import 
 types 
 from 
  
 google.genai.types 
  
 import 
 ( 
 Content 
 , 
 LiveConnectConfig 
 , 
 HttpOptions 
 , 
 Modality 
 , 
 Part 
 ) 
 from 
  
 IPython 
  
 import 
 display 
 PROJECT_ID 
 = 
  YOUR_PROJECT_ID 
 
 LOCATION 
 = 
  YOUR_LOCATION 
 
 TEXT_INPUT 
 = 
  YOUR_TEXT_INPUT 
 
 MODEL_NAME 
 = 
  YOUR_MODEL_NAME 
 
 # Such as "gemini-2.0-flash-exp" 
 client 
 = 
 genai 
 . 
 Client 
 ( 
 vertexai 
 = 
 True 
 , 
 project 
 = 
 PROJECT_ID 
 , 
 location 
 = 
 LOCATION 
 , 
 ) 
 memory_store 
 = 
 types 
 . 
 VertexRagStore 
 ( 
 rag_resources 
 = 
 [ 
 types 
 . 
 VertexRagStoreRagResource 
 ( 
 rag_corpus 
 = 
 memory_corpus 
 . 
 name 
 ) 
 ], 
 store_context 
 = 
 True 
 ) 
 async 
 with 
 client 
 . 
 aio 
 . 
 live 
 . 
 connect 
 ( 
 model 
 = 
 MODEL_NAME 
 , 
 config 
 = 
 LiveConnectConfig 
 ( 
 response_modalities 
 = 
 [ 
 Modality 
 . 
 TEXT 
 ], 
 tools 
 = 
 [ 
 types 
 . 
 Tool 
 ( 
 retrieval 
 = 
 types 
 . 
 Retrieval 
 ( 
 vertex_rag_store 
 = 
 memory_store 
 ))]), 
 ) 
 as 
 session 
 : 
 text_input 
 = 
 TEXT_INPUT 
 await 
 session 
 . 
 send_client_content 
 ( 
 turns 
 = 
 Content 
 ( 
 role 
 = 
 "user" 
 , 
 parts 
 = 
 [ 
 Part 
 ( 
 text 
 = 
 text_input 
 )]) 
 ) 
 async 
 for 
 message 
 in 
 session 
 . 
 receive 
 (): 
 if 
 message 
 . 
 text 
 : 
 display 
 . 
 display 
 ( 
 display 
 . 
 Markdown 
 ( 
 message 
 . 
 text 
 )) 
 continue 
 
 
What's next
- To learn more about Vertex AI RAG Engine, see Vertex AI RAG Engine overview .
- To learn more about the RAG API, see Vertex AI RAG Engine API .
- To manage your RAG corpora, see Corpus management .
- To manage your RAG files, see File management .
- To learn how to use the Vertex AI SDK to run Vertex AI RAG Engine tasks, see RAG quickstart for Python .

