Page Summary
-
The
eigen()method computes the real eigenvectors and eigenvalues of a square 2D input array. -
The method returns an array where each row contains an eigenvalue followed by its corresponding eigenvector.
-
The output array's rows are sorted by eigenvalue in descending order.
-
This functionality is implemented using DecompositionFactory.eig() from ejml.org.
This implementation uses DecompositionFactory.eig() from https://ejml.org.
| Usage | Returns |
|---|---|
Array.
eigen
()
|
Array |
| Argument | Type | Details |
|---|---|---|
|
this:
input
|
Array | A square, 2D array from which to compute the eigenvalue decomposition. |
Examples
Code Editor (JavaScript)
print ( ee . Array ([[ 0 , 0 ], [ 0 , 0 ]]). eigen ()); // [[0,0,1],[0,1,0]] print ( ee . Array ([[ 1 , 0 ], [ 0 , 0 ]]). eigen ()); // [[1,1,0],[0,0,1]] print ( ee . Array ([[ 0 , 1 ], [ 0 , 0 ]]). eigen ()); // [[0,0,1],[0,1,0]] print ( ee . Array ([[ 0 , 0 ], [ 1 , 0 ]]). eigen ()); // [[0,-1,0],[0,0,-1]] print ( ee . Array ([[ 0 , 0 ], [ 0 , 1 ]]). eigen ()); // [[1,0,1],[0,1,0]] print ( ee . Array ([[ 1 , 1 ], [ 0 , 0 ]]). eigen ()); // [[1,1,0],[0,-1/√2,1/√2]] print ( ee . Array ([[ 0 , 0 ], [ 1 , 1 ]]). eigen ()); // [[1,0,-1],[0,-1/√2,1/√2]]] print ( ee . Array ([[ 1 , 0 ], [ 1 , 0 ]]). eigen ()); // [[1,1/√2,1/√2],[0,0,1]] print ( ee . Array ([[ 1 , 0 ], [ 0 , 1 ]]). eigen ()); // [[1,1,0],[1,0,1]] print ( ee . Array ([[ 0 , 1 ], [ 1 , 0 ]]). eigen ()); // [[1,1/√2,1/√2],[-1,1/√2,-1/√2]] print ( ee . Array ([[ 0 , 1 ], [ 0 , 1 ]]). eigen ()); // [[1,1/√2,1/√2],[0,1,0]] print ( ee . Array ([[ 1 , 1 ], [ 1 , 0 ]]). eigen ()); // [[1.62,0.85,0.53],[-0.62,0.53]] print ( ee . Array ([[ 1 , 1 ], [ 0 , 1 ]]). eigen ()); // [[1,0,1],[1,1,0]] print ( ee . Array ([[ 1 , 0 ], [ 1 , 1 ]]). eigen ()); // [[1,-1,0],[1,0,-1]] // [[1.62,-0.53,-0.85],[-0.62,-0.85,0.53]] print ( ee . Array ([[ 0 , 1 ], [ 1 , 1 ]]). eigen ()); print ( ee . Array ([[ 1 , 1 ], [ 1 , 1 ]]). eigen ()); // [[2,1/√2,1/√2],[0,1/√2,-1/√2]] var matrix = ee . Array ([ [ 1 , 0 , 0 ], [ 0 , 1 , 0 ], [ 0 , 0 , 1 ]]); print ( matrix . eigen ()); // [[1,1,0,0],[1,0,1,0],[1,0,0,1]] var matrix = ee . Array ([ [ 2 , 0 , 0 ], [ 0 , 3 , 0 ], [ 0 , 0 , 4 ]]); print ( matrix . eigen ()); // [[4,0,0,1],[3,0,1,0],[2,1,0,0]] matrix = ee . Array ([ [ 1 , 0 , 0 ], [ 0 , 0 , 0 ], [ 0 , 0 , 0 ]]); print ( matrix . eigen ()); // [[1,1,0,0],[0,0,1,0],[0,0,0,1]] matrix = ee . Array ([ [ 1 , 1 , 1 ], [ 1 , 1 , 1 ], [ 1 , 1 , 1 ]]); // [[3,-0.58,-0.58,-0.58],[0,0,-1/√2,1/√2],[0,-0.82,0.41,0.41]] print ( matrix . eigen ());
import ee import geemap.core as geemap
Colab (Python)
display ( ee . Array ([[ 0 , 0 ], [ 0 , 0 ]]) . eigen ()) # [[0, 0, 1], [0, 1, 0]] display ( ee . Array ([[ 1 , 0 ], [ 0 , 0 ]]) . eigen ()) # [[1, 1, 0], [0,0,1]] display ( ee . Array ([[ 0 , 1 ], [ 0 , 0 ]]) . eigen ()) # [[0, 0, 1], [0, 1, 0]] display ( ee . Array ([[ 0 , 0 ], [ 1 , 0 ]]) . eigen ()) # [[0, -1, 0], [0, 0, -1]] display ( ee . Array ([[ 0 , 0 ], [ 0 , 1 ]]) . eigen ()) # [[1, 0, 1], [0, 1, 0]] # [[1, 1, 0], [0, -1/√2, 1/√2]] display ( ee . Array ([[ 1 , 1 ], [ 0 , 0 ]]) . eigen ()) # [[1, 0, -1], [0, -1/√2, 1/√2]]] display ( ee . Array ([[ 0 , 0 ], [ 1 , 1 ]]) . eigen ()) # [[1, 1/√2, 1/√2], [0, 0, 1]] display ( ee . Array ([[ 1 , 0 ], [ 1 , 0 ]]) . eigen ()) display ( ee . Array ([[ 1 , 0 ], [ 0 , 1 ]]) . eigen ()) # [[1, 1, 0], [1, 0, 1]] # [[1, 1/√2, 1/√2], [-1, 1/√2, -1/√2]] display ( ee . Array ([[ 0 , 1 ], [ 1 , 0 ]]) . eigen ()) # [[1, 1/√2, 1/√2], [0, 1, 0]] display ( ee . Array ([[ 0 , 1 ], [ 0 , 1 ]]) . eigen ()) # [[1.62, 0.85, 0.53], [-0.62, 0.53]] display ( ee . Array ([[ 1 , 1 ], [ 1 , 0 ]]) . eigen ()) display ( ee . Array ([[ 1 , 1 ], [ 0 , 1 ]]) . eigen ()) # [[1, 0, 1], [1, 1, 0]] display ( ee . Array ([[ 1 , 0 ], [ 1 , 1 ]]) . eigen ()) # [[1, -1, 0], [1, 0, -1]] # [[1.62, -0.53, -0.85], [-0.62, -0.85, 0.53]] display ( ee . Array ([[ 0 , 1 ], [ 1 , 1 ]]) . eigen ()) # [[2, 1/√2, 1/√2], [0, 1/√2, -1/√2]] display ( ee . Array ([[ 1 , 1 ], [ 1 , 1 ]]) . eigen ()) matrix = ee . Array ([ [ 1 , 0 , 0 ], [ 0 , 1 , 0 ], [ 0 , 0 , 1 ]]) display ( matrix . eigen ()) # [[1, 1, 0, 0], [1, 0, 1, 0], [1, 0, 0, 1]] matrix = ee . Array ([ [ 2 , 0 , 0 ], [ 0 , 3 , 0 ], [ 0 , 0 , 4 ]]) display ( matrix . eigen ()) # [[4, 0, 0, 1], [3, 0, 1, 0], [2, 1, 0, 0]] matrix = ee . Array ([ [ 1 , 0 , 0 ], [ 0 , 0 , 0 ], [ 0 , 0 , 0 ]]) display ( matrix . eigen ()) # [[1, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]] matrix = ee . Array ([ [ 1 , 1 , 1 ], [ 1 , 1 , 1 ], [ 1 , 1 , 1 ]]) # [[3, -0.58, -0.58, -0.58], [0, 0, -1/√2, 1/√2], [0, -0.82, 0.41, 0.41]] display ( matrix . eigen ())

