AI-generated Key Takeaways
-
Aggregates over a specified property of objects in a collection to calculate the minimum value.
-
Can be used with both numerical and string properties, where string aggregation follows alphanumeric order.
-
The method is accessed using
ImageCollection.aggregate_min(property).
| Usage | Returns |
|---|---|
ImageCollection.
aggregate_min
(property)
|
| Argument | Type | Details |
|---|---|---|
|
this:
collection
|
FeatureCollection | The collection to aggregate over. |
property
|
String | The property to use from each element of the collection. |
Examples
Code Editor (JavaScript)
// A Lansat 8 TOA image collection for a specific year and location. var col = ee . ImageCollection ( "LANDSAT/LC08/C02/T1_TOA" ) . filterBounds ( ee . Geometry . Point ([ - 122.073 , 37.188 ])) . filterDate ( '2018' , '2019' ); // An image property of interest, percent cloud cover in this case. var prop = 'CLOUD_COVER' ; // Use ee.ImageCollection.aggregate_* functions to fetch information about // values of a selected property across all images in the collection. For // example, produce a list of all values, get counts, and calculate statistics. print ( 'List of property values' , col . aggregate_array ( prop )); print ( 'Count of property values' , col . aggregate_count ( prop )); print ( 'Count of distinct property values' , col . aggregate_count_distinct ( prop )); print ( 'First collection element property value' , col . aggregate_first ( prop )); print ( 'Histogram of property values' , col . aggregate_histogram ( prop )); print ( 'Min of property values' , col . aggregate_min ( prop )); print ( 'Max of property values' , col . aggregate_max ( prop )); // The following methods are applicable to numerical properties only. print ( 'Mean of property values' , col . aggregate_mean ( prop )); print ( 'Sum of property values' , col . aggregate_sum ( prop )); print ( 'Product of property values' , col . aggregate_product ( prop )); print ( 'Std dev (sample) of property values' , col . aggregate_sample_sd ( prop )); print ( 'Variance (sample) of property values' , col . aggregate_sample_var ( prop )); print ( 'Std dev (total) of property values' , col . aggregate_total_sd ( prop )); print ( 'Variance (total) of property values' , col . aggregate_total_var ( prop )); print ( 'Summary stats of property values' , col . aggregate_stats ( prop )); // Note that if the property is formatted as a string, min and max will // respectively return the first and last values according to alphanumeric // order of the property values. var propString = 'LANDSAT_SCENE_ID' ; print ( 'List of property values (string)' , col . aggregate_array ( propString )); print ( 'Min of property values (string)' , col . aggregate_min ( propString )); print ( 'Max of property values (string)' , col . aggregate_max ( propString ));
import ee import geemap.core as geemap
Colab (Python)
# A Lansat 8 TOA image collection for a specific year and location. col = ee . ImageCollection ( "LANDSAT/LC08/C02/T1_TOA" ) . filterBounds ( ee . Geometry . Point ([ - 122.073 , 37.188 ])) . filterDate ( '2018' , '2019' ) # An image property of interest, percent cloud cover in this case. prop = 'CLOUD_COVER' # Use ee.ImageCollection.aggregate_* functions to fetch information about # values of a selected property across all images in the collection. For # example, produce a list of all values, get counts, and calculate statistics. display ( 'List of property values:' , col . aggregate_array ( prop )) display ( 'Count of property values:' , col . aggregate_count ( prop )) display ( 'Count of distinct property values:' , col . aggregate_count_distinct ( prop )) display ( 'First collection element property value:' , col . aggregate_first ( prop )) display ( 'Histogram of property values:' , col . aggregate_histogram ( prop )) display ( 'Min of property values:' , col . aggregate_min ( prop )) display ( 'Max of property values:' , col . aggregate_max ( prop )) # The following methods are applicable to numerical properties only. display ( 'Mean of property values:' , col . aggregate_mean ( prop )) display ( 'Sum of property values:' , col . aggregate_sum ( prop )) display ( 'Product of property values:' , col . aggregate_product ( prop )) display ( 'Std dev (sample) of property values:' , col . aggregate_sample_sd ( prop )) display ( 'Variance (sample) of property values:' , col . aggregate_sample_var ( prop )) display ( 'Std dev (total) of property values:' , col . aggregate_total_sd ( prop )) display ( 'Variance (total) of property values:' , col . aggregate_total_var ( prop )) display ( 'Summary stats of property values:' , col . aggregate_stats ( prop )) # Note that if the property is formatted as a string, min and max will # respectively return the first and last values according to alphanumeric # order of the property values. prop_string = 'LANDSAT_SCENE_ID' display ( 'List of property values (string):' , col . aggregate_array ( prop_string )) display ( 'Min of property values (string):' , col . aggregate_min ( prop_string )) display ( 'Max of property values (string):' , col . aggregate_max ( prop_string ))

