One of my favorite things is ...

2020.05.10
XML
カテゴリ: データ分析
​​​​ 新型コロナウイルス対策のために検査能力を高める必要があるという理由は、いくつかありますが、最もシンプルな理由は、「早期発見、早期ケア開始のため」ということなのではないかと思います。

「陽性率7%以下」になるように検査数を拡大すべき理由は、感染者を早期に発見できるようにすることなのではないかと思います。


ダッシュボードで、いろいろとグラフを作成していますが、下図は感染確認者数と死亡者数の関係をわかりやすく表していると思います。

以下の内容の一部は、すでに4月17日のブログでも記していますが、散布図のデータを追加して、新たにまとめ直しました。

新型コロナウイルスによって、死亡に至るまでは、「感染→発症→感染確認→入院」といったプロセスを経ている場合が多いと思います。

感染確認者数の山から、遅れて死亡者数の山が見られるのは、上記のような死亡に至るプロセスがあるからです。

重症化してから入院する場合と、ある程度軽症のうちに入院する場合とでは、その後の経過は異なる可能性が高いと思います。

ある程度重症化してからしか検査が受けられないような状況では、死亡のリスクが高くなるはずです。検査のタイミングが遅いと死亡率を高めるのではないかと思います。

特に、高齢者や疾患のあるハイリスクの人は、早期に検査を受けられるようにする必要があると思います。

ECDCのデータを利用したダッシュボードで、感染確認者数の時系列推移と死亡者数の時系列推移のグラフを作成すると、感染確認者数の山の後に死亡者数の山が見られることがはっきりとわかります。

ただし、このような二つの山がはっきりとしているかどうかは、国によって、あるいは感染拡大のフェーズによって異なっているようです。

感染確認者数の時系列推移と死亡者数の時系列推移のタイムラグは、検査が適切なタイミングでできているのかどうかをうかがい知る一つの指標になるのではないかと考え、R言語のccf関数を使って、国別に相互相関を計算してみました。

どれくらいの日数のタイムラグの場合に相互相関が最大になるのかを計算した結果では、ドイツは、比較的長い日数のタイムラグが見られます。つまり、ドイツでは感染確認から死亡までの日数が長いようです。感染確認者に対する治療の時間が確保されているのではないでしょうか。

一方、タイムラグが短い国の場合は、感染確認から死亡までの日数が短いと考えられ、「検査のタイミングが遅い」「医療崩壊によってケアができていない」といったことがあるのではないでしょうか。

日本の場合は、以前はタイムラグが短かったのですが、最近は長くなっています。

日本のグラフを見ると、検査のタイミングが4月上旬頃から改善されてきているように思います。ということは、4月上旬までに発症した人の中には検査体制の制約の影響で、検査のタイミングが遅れて、十分なケアを受けられずに死亡した人が少なからずいた可能性があると思います。もしかすると、有名な俳優の方もその中に含まれていた、ということなのかもしれません。

少なくとも、4月上旬までは、検査のタイミングが遅い場合が直近よりも多かったことがうかがえます。

感染確認者数が減少傾向になった日本では、最近、検査のタイミングが早くなってきているのではないかと思います。

4月初め頃までは、検査のキャパがひっ迫していたようです。諸外国と比べて、少なかった検査数は、死亡者数の増加につながった可能性があるのかもしれません。

検査数に余裕がないと、ケアの開始が遅くなることによって、死亡率の上昇につながりかねないので、今後も検査能力の拡充が望まれます。

↓ECDCデータ版のダッシュボードで、国別に感染確認者数の時系列と死亡者数(右目盛り)の時系列を並べて見ることができます。




日本の「感染確認者数の時系列と死亡者の時系列」は、11日間のタイムラグの場合に相関が最大になっています。4月17日に計算した結果では、4日間でした。



↓4月17日のブログで紹介したグラフです。4日間のタイムラグの場合に相関が最大になっています。



↓感染確認者数の時系列推移と死亡者数の時系列推移の相互相関を国別に計算しました。相関が最大になる「lag(タイムラグ)」(横軸)と死亡率(縦軸)をプロットしています。累積死亡者数が50人以上で、タイムラグが0未満の国についてプロットしています。タイムラグの日数が長い国の方が死亡率がやや低い傾向が見られます。



​【散布図を作成するためのRのコード例】
実効再生産数・Rtの計算で用いたループの手法で、国別にccf()関数の計算をしてみました。リストに対してループ処理ができるので便利です。
-----------------------------------------------------------------​
df_ECDC <- read.csv("https://opendata.ecdc.europa.eu/covid19/casedistribution/csv", na.strings = "", fileEncoding = "UTF-8-BOM",stringsAsFactors = FALSE)
geo_list <- unique(df_ECDC$countriesAndTerritories)
df_ECDCtemp1 <- NULL
df_ECDCtemp <- df_ECDC
df_CC <- NULL
cc_temp <- NULL
cc_tempmr <- NULL
dfcc_tempmr <- NULL
dfcc_tempmrmax <- NULL
for (i in seq_along(geo_list)) 
 {
 df_ECDCtemp1 <- subset(df_ECDCtemp,df_ECDCtemp$countriesAndTerritories==geo_list[i]) 
 cc_temp <- ccf(df_ECDCtemp1$cases, df_ECDCtemp1$deaths,plot=FALSE)
 cc_tempmr <- matrix(c(cc_temp$lag,cc_temp$acf),ncol=2)
 dfcc_tempmr <- as.data.frame(cc_tempmr)
 colnames(dfcc_tempmr) <- c("lag","acf")
 dfcc_tempmrmax <-  dfcc_tempmr %>% slice(which.max(acf))
 dfcc_tempmrmax <- mutate(dfcc_tempmrmax,countriesAndTerritories=geo_list[i])
 Confirmed_M <- max(df_ECDCtemp1$Confirmed)
 Deaths_M <- max(df_ECDCtemp1$C_Deaths)
 Mortality <- Deaths_M/Confirmed_M*100
 dfcc_tempmrmax <- mutate(dfcc_tempmrmax,Confirmed=Confirmed_M)
 dfcc_tempmrmax <- mutate(dfcc_tempmrmax,Deaths=Deaths_M)
 dfcc_tempmrmax <- mutate(dfcc_tempmrmax,Mortality=Mortality)
 df_CC <- rbind(df_CC,dfcc_tempmrmax)
}
df_CCd1 <- subset(df_CC,df_CC$Deaths >= 50)
df_CCd2 <- subset(df_CCd1,df_CCd1$lag < 0)
ggplot(df_CCd2,aes(x=lag,y=Mortality,label = countriesAndTerritories)) + geom_point()+stat_smooth(method = "lm", se = FALSE, colour = "black", size = 1) + geom_text_repel()



--------------------------------------------------------------------------​​​

↓実効再生産数を計算できる Webアプリがあります。


​↓倍加時間についてです。

--------------------------------------------------------------------------​​​






​【ダッシュボード 「COVID-19 Transition Graphs」 を試作】​​
中国本土以外の地域への感染が拡大しているため、国別、地域別の感染者数の推移を簡単に確認できるダッシュボードを試作しています。​

随時、ページを追加しています。グラフのデータは、右上部分の操作でダウンロードすることができます。

アメリカの「地域別の変数」を前処理して、「州別」での推移をグラフ化できるようにしました。

また、州コードのフィールドを作成してコロプレス地図も作成しています。

楽天ブログでは「iframe」タグが使えないので、Bloggerのページから利用できるようにしています。

無料で利用できる、グーグルの「データポータル」のダッシュボードです。データさえあれば、簡単に作成できます。「国」別、「地域」別に日ごとの感染者数の推移を見ることができます。

↓ダッシュボードの試作です。下記リンクのページから利用できます。
​​

ジョンズ・ホプキンス大学の 「JHU CSSE」の「Covid19 Daily Reports」のデータを利用しています。

直近のアメリカのデータは地域分類が細かくなっていて、1日当たり2千行くらいになっています。
EdgeブラウザやIEブラウザなど、Chromeブラウザ以外での利用の場合はうまく表示されないことがあるようです。

上記のダッシュボードのデータの出所のサイトです。マップがメインのダッシュボードです





↓WHOのサイトでも、感染者数、地域などの「Situation Report」が日々更新されています。関心がある場合は、一日に一度見るといいのではないかと思います。







↓日本のインフルエンザの「定点当たり報告数」をグラフ化できるダッシュボードを試作。都道府県別にグラフ化可能です。



​------------------------------------------------------
 新型コロナウイルス(2019-novel coronavirus)対策もインフルエンザ対策と同じで、手洗い、うがい、マスク着用(咳エチケット)、免疫力アップなどが対策になるようです。​



★おすすめの記事 ​​







​​ ◆How Windows Sonic looks like.​​:Windows Sonic for Headphonesの音声と2chステレオ音声の比較:7.1.2chテストトーンの比較で明らかになった違い:一目で違いがわかりました











お気に入りの記事を「いいね!」で応援しよう

Last updated  2020.05.13 07:05:01
コメント(3) | コメントを書く


【毎日開催】
15記事にいいね!で1ポイント
10秒滞在
いいね! -- / --
おめでとうございます!
ミッションを達成しました。
※「ポイントを獲得する」ボタンを押すと広告が表示されます。
x
X

PR

Free Space











Rebatesお友達紹介キャンペーン

​​ ​​

Comments

digital_21 @ Re[1]:◆【新型コロナ】やっぱり、PCR検査(08/02) 背番号のないエース0829さんへ すてきな内…
背番号のないエース0829 @ Re:◆【新型コロナ】やっぱり、PCR検査 「日本一遅い成人式が、無事終了 !!」に、…

Keyword Search

▼キーワード検索


© Rakuten Group, Inc.
X
Create a Mobile Website
スマートフォン版を閲覧 | PC版を閲覧
Share by: