アフィリエイト広告を利用しています
ファン
検索
<< 2024年08月 >>
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
最新記事
写真ギャラリー
最新コメント
タグクラウド
カテゴリアーカイブ
プロフィール

広告

posted by fanblog

2023年10月20日

コラッツ予想(その3)

コラッツの数式に当てはめていくと、なぜ、全ての正の整数が(多分)1にたどり着いてしまうの かは、数学のシロウトでも、なんとなく、その仕掛けが想像(イメージ)できるのではないかと思います。

 このコラッツの数式は、要するに、 「割る2」 「×3」 「+1」 の組み合わせなのです。正の整数の中では、もっとも小さい、言い換えれば、 自然数の基礎とも言うべき三つの数字です。よって、 この三つの数字を色々と組み合わせれば、それ以上の大きな整数は、どの数字だって作り出せる のが当然のはずなのです。それは、逆も意味しています。 これらの三つの数字を上手に使えば、あらゆる整数を1にまで分解してしまう事 も可能な訳です。

 コラッツの数式の場合は、 「割る2」と「×3」の組み合わせが実に絶妙です。一見、「×3」ばかりが続けば、「割る2」が追いつかず、 数は巨大化していくばかり のようにも感じられますが、ここに 「偶数は2で割って、奇数は×3+1」 という条件がついています。

偶数を計算したあとは偶数にも奇数にもなりますが、 奇数の計算のあとは必ず偶数になってしまうカラクリなのです。つまり、 確率的には、絶対に偶数の出現率の方が多くなる のであり、ゆえに、 偶数の「割る2」の回数の方が奇数の「×3」の回数の方を上回る事になる のです。だから、 この計算式を何度も繰り返せば、割る事の方が多くて、いずれは、最小の1にまで割れてしまうという理屈になるのです。

 ここで、ひそかに重要な要素となっているのが 「+1」 です。この「+1」は、 奇数を偶数に変える役目 も果たしていますが、同時に、 元の数字を1ずつ、ずらしていく効果も持っています。このように、1ずつ、ずれてゆく事によって、 掛け算と割り算だけでは1には成らない数でも、少しずつ微調整された末に、やがては1にたどり着いてしまう と言う仕組みです。

 コラッツの数式の構造は、言葉で説明すれば、ざっと、こんな感じなのですが、残念ながら、これだけでは、コラッツ予想を証明した事にはなりません。 数学の世界には「なんとなくイメージでは」という妥協は存在せず、正解は具体的な形にしなくてはいけないからです。

 つまり、以上の解説を証明したければ、 それを立証した数式を構築する か、あるいは、 完全に証明してみせた過程を提示 しなくてはいけません。この簡単なコラッツの数式が、いまだに誰にも解明された事になっていないのは、 この証明の部分が厄介だから なのです。

この記事へのコメント
コメントを書く

お名前:

メールアドレス:


ホームページアドレス:

コメント:

※ブログオーナーが承認したコメントのみ表示されます。

この記事へのトラックバックURL
https://fanblogs.jp/tb/12267984
※ブログオーナーが承認したトラックバックのみ表示されます。

この記事へのトラックバック
×

この広告は30日以上新しい記事の更新がないブログに表示されております。

Mobilize your Site
スマートフォン版を閲覧 | PC版を閲覧
Share by: