定義 (余完備性).圏 $\mathscr{C}$ において, 任意の有限図式の余極限が存在するとき, $\mathscr{C}$ は 有限余完備 (finite cocomplete)であると言う. さらに任意の図式の極限が存在するとき, $\mathscr{C}$ は 完備 (cocomplete)であると言う.
集合の圏について次が成り立つ. すなわち, 集合の圏は完備かつ余完備である.
定理.集合の圏 $\mathbf{Set}$ は余完備である.
証明.$D : \mathscr{I} \rightarrow \mathbf{Set}$ を集合の圏 $\mathbf{Set}$ における任意の図式とし, $S$ を全ての $D(i)\, (i \in \mathrm{Ob}{\mathscr{I}})$ にわたる非交和 (disjoint union) とする.
\begin{equation*}
\DeclareMathOperator{\Ar}{Ar}
\DeclareMathOperator{\Arccos}{Arccos}
\DeclareMathOperator{\Arcsin}{Arcsin}
\DeclareMathOperator{\Arr}{Arr}
\DeclareMathOperator{\Card}{card}
\DeclareMathOperator{\Codomain}{cod}
\DeclareMathOperator{\Colim}{colim}
\DeclareMathOperator{\Cocone}{Cocone}
\DeclareMathOperator{\Cone}{Cone}
\DeclareMathOperator{\Domain}{dom}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\In}{in}
\DeclareMathOperator{\INIT}{init}
\DeclareMathOperator{\Nat}{Nat}
\DeclareMathOperator{\Ob}{Ob}
\DeclareMathOperator{\Path}{Path}
\DeclareMathOperator{\SF}{SF}
\DeclareMathOperator{\Sub}{Sub}
\DeclareMathOperator{\TERM}{term}
\newcommand{\Abs}[1]{\lvert{#1}\rvert}
\newcommand{\Cdot}{\,\cdot^{\mathrm{op}}}
\newcommand{\CommaCat}[2]{(#1/#2)}
\newcommand{\Emph}[1]{\textit{#1}}
\newcommand{\Eqclass}[4]{{#1#2#3}_{#4}}
\newcommand{\EqCls}[2]{{\left[#1\right]}_{#2}}
\newcommand{\Eqcls}[1]{\left[#1\right]}
\newcommand{\FnRest}[2]{{#1}|{#2}}
\newcommand{\Func}[2]{\mathrm{Func}(#1,#2)}
\newcommand{\g}{\varg}
\newcommand{\Id}[1]{\mathrm{id}_{#1}}
\newcommand{\Inc}[2]{\mathrm{incl}\left(#1,#2\right)}
\newcommand{\Incl}[2]{\mathrm{incl}_{#1}^{#2}}
\newcommand{\InclArrow}[2]{\morphism(0,0)/>->/<450,0>[\Incl{#1}{#2} : {#1}\,\,`{#2};]}
\newcommand{\Lb}[1]{\mathrm{lb}(#1)}
\newcommand{\Lowerset}[1]{\downarrow\!\!{#1}}
\newcommand{\Mb}[1]{\mathbf{#1}}
\newcommand{\Mbb}[1]{\mathbb{#1}}
\newcommand{\Mi}[1]{\mathit{#1}}
\newcommand{\Mlb}[1]{\mathrm{mlb}(#1)}
\newcommand{\Mr}[1]{\mathrm{#1}}
\newcommand{\Ms}[1]{\mathscr{#1}}
\newcommand{\Mt}[1]{\mathtt{#1}}
\newcommand{\Mub}[1]{\mathrm{mub}(#1)}
\newcommand{\Opp}[1]{{#1}^{\mathrm{op}}}
\newcommand{\Prj}[2]{\mathrm{proj}\left(#1,#2\right)}
\newcommand{\Proj}[2]{\mathrm{proj}^{#1}_{#2}}
\newcommand{\Pw}{\mathbf{P}}
\newcommand{\Rn}[1]{{\bmdefine{R}}^{#1}}
\newcommand{\q}{\hspace{1em}}
\newcommand{\qq}{\hspace{0.5em}}
\newcommand{\Rel}[1]{\langle{#1}\rangle}
\newcommand{\Rest}[2]{{#1}|{#2}}
\newcommand{\SkelCat}[1]{\mathrm{sk}(#1)}
\newcommand{\Slash}[1]{{\ooalign{\hfil/\hfil\crcr$#1$}}}
\newcommand{\SliCat}[2]{{#1}\,\big/\,{#2}}
\newcommand{\Src}{d^{0,\mathrm{op}}}
\newcommand{\ssqrt}[1]{\sqrt{\smash[b]{\mathstrut #1}}}
\newcommand{\Tgt}{d^{1,\mathrm{op}}}
\newcommand{\TwArCat}[1]{\mathrm{Tw}(#1)}
\newcommand{\Ub}[1]{\mathrm{ub}(#1)}
\newcommand{\Upperset}[1]{\uparrow\!\!{#1}}
\newcommand{\VectCat}[1]{#1 \mathchar`- \mathbf{Vect}}
\newcommand{\Grp}{\mathbf{Grp}}
\newcommand{\Mon}{\mathbf{Mon}}
\newcommand{\POs}{\mathbf{Poset}}
\newcommand{\Psh}{\mathbf{Psh}}
\newcommand{\Set}{\mathbf{Set}}
\newcommand{\Sh}{\mathbf{Sh}}
\newcommand{\Top}{\mathbf{Top}}
\newcommand{\sA}{\mathscr{A}}
\newcommand{\sB}{\mathscr{B}}
\newcommand{\sC}{\mathscr{C}}
\newcommand{\sD}{\mathscr{D}}
\newcommand{\sE}{\mathscr{E}}
\newcommand{\sF}{\mathscr{F}}
\newcommand{\sG}{\mathscr{G}}
\newcommand{\sH}{\mathscr{H}}
\newcommand{\sI}{\mathscr{I}}
\newcommand{\sJ}{\mathscr{J}}
\newcommand{\sK}{\mathscr{K}}
\newcommand{\sL}{\mathscr{L}}
\newcommand{\sM}{\mathscr{M}}
\newcommand{\sN}{\mathscr{N}}
\newcommand{\sO}{\mathscr{O}}
\newcommand{\sP}{\mathscr{P}}
\newcommand{\sR}{\mathscr{R}}
\newcommand{\sS}{\mathscr{S}}
\newcommand{\sT}{\mathscr{T}}
\newcommand{\sU}{\mathscr{U}}
\newcommand{\sV}{\mathscr{V}}
\newcommand{\sW}{\mathscr{W}}
\newcommand{\sX}{\mathscr{X}}
\newcommand{\sY}{\mathscr{Y}}
\newcommand{\sZ}{\mathscr{Z}}
\newcommand{\Natural}{\mathbf{{N}}}
\newcommand{\bmN}{\mathbf{{N}}}
\newcommand{\Integer}{\mathbf{{Z}}}
\newcommand{\bmZ}{\mathbf{{Z}}}
\newcommand{\Real}{R}
\newcommand{\bmR}{R}
\newcommand{\Rational}{Q}
\newcommand{\bmQ}{Q}
\newcommand{\Complex}{\mathbf{{C}}}
\newcommand{\bmC}{\mathbf{{C}}}
S = \coprod_{i \in \Ob{\sI}} D(i)
\end{equation*} $x,y \in S$ が次の条件のいずれか一方を満足するとき $x R y$ と書いて, $S$ 上の関係 $R$ を定義する:
(i) x = y.
(ii) $\sI$ における射 $e : i \rightarrow j$ が存在して,
・ $x \in D(i)$, $y \in D(j)$ で $(D(e))(x) = y$;
・ $x \in D(j)$, $y \in D(i)$ で $x = (D(e))(y)$
の少なくとも一つが成り立つ.
条件 (i) は $x R x$ を意味する. すなわち $R$ は反射的 (reflexive) である. また条件 (ii) は $x R y$ ならば $y R x$ が成り立つことを意味する. すなわち $R$ は対称的 (symmetric) である.
$x,y \in S$ とする. $S$ 内の有限列 $x_0,\dots,x_n$ で $x_0=x,x_n=y$ かつ
\begin{equation*}
x_i R x_{i+1} \quad (i=0,\dots,n-1)
\end{equation*} を満たすものが存在するとき, $x E y$ と表わすことにする. $E$ は $S$ 上の関係だが, $x R y$ のとき $x_1=x,x_1=y$ とおけば $x E y$ となるので $E$ は $R$ を含む.
$E$ が同値関係であることを示す. $x,y,z \in S$ とする. まず, $x_0=x=x_1$ とおくことにより有限列 $x_0,x_1$ は $x=x_0 R x_1=x$ を満たすから $x E x$, すなわち $E$ は対称的である. 次に $x E y$ とすると, 有限列 $x_0,\dots,x_n$ で $x_0=x,x_n=y$ かつ $x_i R x_{i+1}\,(i=0,\dots,n-1)$ となるものが存在する. ここで, $y_i=x_{n-i}\, (i=0,\dots,n)$ とおくと, 有限列 $y_0,\dots,y_n$ は $y_0=x_n=y,y_n=x_0=x$ かつ $R$ が対称的であることから $y_i=x_{n-i} R y_{i+1}=x_{n-i-1}\,(i=0,\dots,n-1)$ である. よって $y E x$ となるから $E$ は対称的である. 最後に $x E y, y E z$ とすると, 有限列 $x_0,\dots,x_m$ で $x_0=x,x_m=y$ かつ $x_i R x_{i+1}\,(i=0,\dots,m-1)$ となるもの, および有限列 $y_0,\dots,y_n$ $y_0=y,y_n
=z$ かつ $y_j R y_{j+1}\,(j=0,\dots,n-1)$ となるものが存在する. ここで, 有限列 $x'_0,\dots,x'_{m+n}$ を
\begin{equation*}
x'_i = \begin{cases}
x_i & (i=0,\dots,m), \\
y_{i-m} & (i=m+1,\dots,m+n)
\end{cases}
\end{equation*} と定義すると
\begin{gather*}
x'_0=x_0=x, \quad x'_m=x_m=y=y_0 R y_1=x'_{m+1}, \quad x'_{m+n}=y_{n}=z, \\
x'_i R x'_{i+1} \qq (i=0,\dots,m+n)
\end{gather*} となるから $x E z$ であり $E$ は推移的 (transitive) である. 以上より $E$ は $S$ 上の同値関係である.
ここで,
\begin{equation*}
P = S/E
\end{equation*} とおき, $q : S \rightarrow P$ を商写像 (quotient mapping) とする. $P$ を頂点とする $D$ からの余錐を
\begin{equation*}
p = q|D, \quad\text{i.e.,}\quad p(i) = q|D(i) : D(i) \longrightarrow P \qq (i \in \Ob{\sI})
\end{equation*} と定義する.
$P=\Colim{D}$ であり, $p : D \rightarrow P$ がそれに伴う普遍的な可換余錐であることを示す. それには, 任意の $D$ 上の可換余錐 $c : D \rightarrow T$ に対して, 写像 $u : P \rightarrow T$ で図式
\begin{equation}
\label{dgm:u.p=c}
\begin{xy}
\xymatrix@=48pt {
D \ar[r]^{p} \ar[dr]_{c} & P \ar[d]^{u} \\
& T
}
\end{xy}
\end{equation} を可換にするものが一意的に存在することを言えばよい.
まず, $p$ が可換余錐であることを示す. 任意の $\sI$ の射 $e : i \rightarrow j$ に対して, 図式
\begin{equation}
\label{dgm:p(i)=p(j).D(e)}
\begin{xy}
\xymatrix@=20pt {
D(i) \ar[dd]_{D(e)} \ar[drr]^{p(i)} & & \\
& & P \\
D(j) \ar[urr]_{p(j)} & &
}
\end{xy}
\end{equation} を考える. 任意の $x \in D(i)$ と $y=D(e)(x) \in D(j)$ に対して, $y$ の定義より $x E y$ が成り立つ. よって
\begin{align*}
p(j) \circ D(e)(x) & = p(j)(D(e)(x)) \\
& = (q|D(j))(D(e)(x)) = q(x) = (q|D(i))(x) \\
& = p(i)(x)
\end{align*} である. すなわち図式 (\ref{dgm:p(i)=p(j).D(e)}) は可換となり, $p$ が可換余錐であることがわかる.
次に $c : D \rightarrow T$ を $D$ からの任意の可換余錐とする. 仮定より任意の $\sI$ の射 $e : i \rightarrow j$ と任意の $x \in D(i)$, $y=D(e)(x) \in D(j)$ に対して図式
\begin{equation*}
\begin{xy}
\xymatrix@=20pt {
D(i) \ar[dd]_{D(e)} \ar[drr]^{c(i)} & & \\
& & T \\
D(j) \ar[urr]_{c(j)} & &
}
\end{xy}
\end{equation*} は可換である. これは $x E y$ ならば $c(i)(x)=c(j)(y)$ であることを意味する. このことにより $x$ の $E$ による同値類を $[x]_E$ ($=q(x)$)と表わしたときに, 写像 $u : P \rightarrow T$ を $u([x]_E)=c(i)(x)$ によって定義することができる. $u$ の定義により, 図式 (\ref{dgm:u.p=c}) において
\begin{equation*}
u \circ p(i)(x) = u(p(i)(x)) = u((q|D(i))(x)) = u(q(x)) = u([x]_E) = c(x)
\end{equation*} が成り立つ. よって図式 (\ref{dgm:u.p=c}) は可換である. さらに $p$ が全射であることにより, このような $u$ は一意的に定まる.
したがって $P=\Colim{D}$ であり集合の圏 $\Set$ は余完備である.
【このカテゴリーの最新記事】
- no image
- no image
- no image
- no image
- no image