Create a batch prediction job

Creates a batch prediction job using the create_batch_prediction_job method.

Explore further

For detailed documentation that includes this code sample, see the following:

Code sample

Java

Before trying this sample, follow the Java setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Java API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  import 
  
 com.google.cloud.aiplatform.util. ValueConverter 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. AcceleratorType 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. BatchDedicatedResources 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. BatchPredictionJob 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. GcsDestination 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. GcsSource 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. JobServiceClient 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. JobServiceSettings 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. LocationName 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. MachineSpec 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. ModelName 
 
 ; 
 import 
  
 com.google.protobuf. Value 
 
 ; 
 import 
  
 java.io.IOException 
 ; 
 public 
  
 class 
 CreateBatchPredictionJobSample 
  
 { 
  
 public 
  
 static 
  
 void 
  
 main 
 ( 
 String 
 [] 
  
 args 
 ) 
  
 throws 
  
 IOException 
  
 { 
  
 // TODO(developer): Replace these variables before running the sample. 
  
 String 
  
 project 
  
 = 
  
 "PROJECT" 
 ; 
  
 String 
  
 displayName 
  
 = 
  
 "DISPLAY_NAME" 
 ; 
  
 String 
  
 modelName 
  
 = 
  
 "MODEL_NAME" 
 ; 
  
 String 
  
 instancesFormat 
  
 = 
  
 "INSTANCES_FORMAT" 
 ; 
  
 String 
  
 gcsSourceUri 
  
 = 
  
 "GCS_SOURCE_URI" 
 ; 
  
 String 
  
 predictionsFormat 
  
 = 
  
 "PREDICTIONS_FORMAT" 
 ; 
  
 String 
  
 gcsDestinationOutputUriPrefix 
  
 = 
  
 "GCS_DESTINATION_OUTPUT_URI_PREFIX" 
 ; 
  
 createBatchPredictionJobSample 
 ( 
  
 project 
 , 
  
 displayName 
 , 
  
 modelName 
 , 
  
 instancesFormat 
 , 
  
 gcsSourceUri 
 , 
  
 predictionsFormat 
 , 
  
 gcsDestinationOutputUriPrefix 
 ); 
  
 } 
  
 static 
  
 void 
  
 createBatchPredictionJobSample 
 ( 
  
 String 
  
 project 
 , 
  
 String 
  
 displayName 
 , 
  
 String 
  
 model 
 , 
  
 String 
  
 instancesFormat 
 , 
  
 String 
  
 gcsSourceUri 
 , 
  
 String 
  
 predictionsFormat 
 , 
  
 String 
  
 gcsDestinationOutputUriPrefix 
 ) 
  
 throws 
  
 IOException 
  
 { 
  
  JobServiceSettings 
 
  
 settings 
  
 = 
  
  JobServiceSettings 
 
 . 
 newBuilder 
 () 
  
 . 
 setEndpoint 
 ( 
 "us-central1-aiplatform.googleapis.com:443" 
 ) 
  
 . 
 build 
 (); 
  
 String 
  
 location 
  
 = 
  
 "us-central1" 
 ; 
  
 // Initialize client that will be used to send requests. This client only needs to be created 
  
 // once, and can be reused for multiple requests. After completing all of your requests, call 
  
 // the "close" method on the client to safely clean up any remaining background resources. 
  
 try 
  
 ( 
  JobServiceClient 
 
  
 client 
  
 = 
  
  JobServiceClient 
 
 . 
 create 
 ( 
 settings 
 )) 
  
 { 
  
 // Passing in an empty Value object for model parameters 
  
  Value 
 
  
 modelParameters 
  
 = 
  
  ValueConverter 
 
 . 
 EMPTY_VALUE 
 ; 
  
  GcsSource 
 
  
 gcsSource 
  
 = 
  
  GcsSource 
 
 . 
 newBuilder 
 (). 
  addUris 
 
 ( 
 gcsSourceUri 
 ). 
 build 
 (); 
  
  BatchPredictionJob 
 
 . 
  InputConfig 
 
  
 inputConfig 
  
 = 
  
  BatchPredictionJob 
 
 . 
 InputConfig 
 . 
 newBuilder 
 () 
  
 . 
  setInstancesFormat 
 
 ( 
 instancesFormat 
 ) 
  
 . 
 setGcsSource 
 ( 
 gcsSource 
 ) 
  
 . 
 build 
 (); 
  
  GcsDestination 
 
  
 gcsDestination 
  
 = 
  
  GcsDestination 
 
 . 
 newBuilder 
 (). 
  setOutputUriPrefix 
 
 ( 
 gcsDestinationOutputUriPrefix 
 ). 
 build 
 (); 
  
  BatchPredictionJob 
 
 . 
 OutputConfig 
  
 outputConfig 
  
 = 
  
  BatchPredictionJob 
 
 . 
 OutputConfig 
 . 
 newBuilder 
 () 
  
 . 
  setPredictionsFormat 
 
 ( 
 predictionsFormat 
 ) 
  
 . 
 setGcsDestination 
 ( 
 gcsDestination 
 ) 
  
 . 
 build 
 (); 
  
  MachineSpec 
 
  
 machineSpec 
  
 = 
  
  MachineSpec 
 
 . 
 newBuilder 
 () 
  
 . 
  setMachineType 
 
 ( 
 "n1-standard-2" 
 ) 
  
 . 
  setAcceleratorType 
 
 ( 
  AcceleratorType 
 
 . 
 NVIDIA_TESLA_T4 
 ) 
  
 . 
  setAcceleratorCount 
 
 ( 
 1 
 ) 
  
 . 
 build 
 (); 
  
  BatchDedicatedResources 
 
  
 dedicatedResources 
  
 = 
  
  BatchDedicatedResources 
 
 . 
 newBuilder 
 () 
  
 . 
 setMachineSpec 
 ( 
 machineSpec 
 ) 
  
 . 
  setStartingReplicaCount 
 
 ( 
 1 
 ) 
  
 . 
 setMaxReplicaCount 
 ( 
 1 
 ) 
  
 . 
 build 
 (); 
  
 String 
  
 modelName 
  
 = 
  
  ModelName 
 
 . 
 of 
 ( 
 project 
 , 
  
 location 
 , 
  
 model 
 ). 
 toString 
 (); 
  
  BatchPredictionJob 
 
  
 batchPredictionJob 
  
 = 
  
  BatchPredictionJob 
 
 . 
 newBuilder 
 () 
  
 . 
 setDisplayName 
 ( 
 displayName 
 ) 
  
 . 
 setModel 
 ( 
 modelName 
 ) 
  
 . 
  setModelParameters 
 
 ( 
 modelParameters 
 ) 
  
 . 
  setInputConfig 
 
 ( 
 inputConfig 
 ) 
  
 . 
 setOutputConfig 
 ( 
 outputConfig 
 ) 
  
 . 
 setDedicatedResources 
 ( 
 dedicatedResources 
 ) 
  
 . 
 build 
 (); 
  
  LocationName 
 
  
 parent 
  
 = 
  
  LocationName 
 
 . 
 of 
 ( 
 project 
 , 
  
 location 
 ); 
  
  BatchPredictionJob 
 
  
 response 
  
 = 
  
 client 
 . 
 createBatchPredictionJob 
 ( 
 parent 
 , 
  
 batchPredictionJob 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "response: %s\n" 
 , 
  
 response 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tName: %s\n" 
 , 
  
 response 
 . 
  getName 
 
 ()); 
  
 } 
  
 } 
 } 
 

Python

Before trying this sample, follow the Python setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Python API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  from 
  
 google.cloud 
  
 import 
 aiplatform 
 from 
  
 google.protobuf 
  
 import 
 json_format 
 from 
  
 google.protobuf.struct_pb2 
  
 import 
 Value 
 def 
  
 create_batch_prediction_job_sample 
 ( 
 project 
 : 
 str 
 , 
 display_name 
 : 
 str 
 , 
 model_name 
 : 
 str 
 , 
 instances_format 
 : 
 str 
 , 
 gcs_source_uri 
 : 
 str 
 , 
 predictions_format 
 : 
 str 
 , 
 gcs_destination_output_uri_prefix 
 : 
 str 
 , 
 location 
 : 
 str 
 = 
 "us-central1" 
 , 
 api_endpoint 
 : 
 str 
 = 
 "us-central1-aiplatform.googleapis.com" 
 , 
 ): 
 # The AI Platform services require regional API endpoints. 
 client_options 
 = 
 { 
 "api_endpoint" 
 : 
 api_endpoint 
 } 
 # Initialize client that will be used to create and send requests. 
 # This client only needs to be created once, and can be reused for multiple requests. 
 client 
 = 
 aiplatform 
 . 
 gapic 
 . 
  JobServiceClient 
 
 ( 
 client_options 
 = 
 client_options 
 ) 
 model_parameters_dict 
 = 
 {} 
 model_parameters 
 = 
 json_format 
 . 
 ParseDict 
 ( 
 model_parameters_dict 
 , 
 Value 
 ()) 
 batch_prediction_job 
 = 
 { 
 "display_name" 
 : 
 display_name 
 , 
 # Format: 'projects/{project}/locations/{location}/models/{model_id}' 
 "model" 
 : 
 model_name 
 , 
 "model_parameters" 
 : 
 model_parameters 
 , 
 "input_config" 
 : 
 { 
 "instances_format" 
 : 
 instances_format 
 , 
 "gcs_source" 
 : 
 { 
 "uris" 
 : 
 [ 
 gcs_source_uri 
 ]}, 
 }, 
 "output_config" 
 : 
 { 
 "predictions_format" 
 : 
 predictions_format 
 , 
 "gcs_destination" 
 : 
 { 
 "output_uri_prefix" 
 : 
 gcs_destination_output_uri_prefix 
 }, 
 }, 
 "dedicated_resources" 
 : 
 { 
 "machine_spec" 
 : 
 { 
 "machine_type" 
 : 
 "n1-standard-2" 
 , 
 "accelerator_type" 
 : 
 aiplatform 
 . 
 gapic 
 . 
  AcceleratorType 
 
 . 
 NVIDIA_TESLA_K80 
 , 
 "accelerator_count" 
 : 
 1 
 , 
 }, 
 "starting_replica_count" 
 : 
 1 
 , 
 "max_replica_count" 
 : 
 1 
 , 
 }, 
 } 
 parent 
 = 
 f 
 "projects/ 
 { 
 project 
 } 
 /locations/ 
 { 
 location 
 } 
 " 
 response 
 = 
 client 
 . 
  create_batch_prediction_job 
 
 ( 
 parent 
 = 
 parent 
 , 
 batch_prediction_job 
 = 
 batch_prediction_job 
 ) 
 print 
 ( 
 "response:" 
 , 
 response 
 ) 
 

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser .

Create a Mobile Website
View Site in Mobile | Classic
Share by: