Test text prompts (Generative AI)

Test a test prompt to generate ideas using a publisher text model.

Code sample

Java

Before trying this sample, follow the Java setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Java API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  import 
  
 com.google.cloud.aiplatform.v1. EndpointName 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. PredictResponse 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. PredictionServiceClient 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. PredictionServiceSettings 
 
 ; 
 import 
  
 com.google.protobuf. Value 
 
 ; 
 import 
  
 com.google.protobuf.util. JsonFormat 
 
 ; 
 import 
  
 java.io.IOException 
 ; 
 import 
  
 java.util.ArrayList 
 ; 
 import 
  
 java.util.List 
 ; 
 public 
  
 class 
 PredictTextPromptSample 
  
 { 
  
 public 
  
 static 
  
 void 
  
 main 
 ( 
 String 
 [] 
  
 args 
 ) 
  
 throws 
  
 IOException 
  
 { 
  
 // TODO(developer): Replace these variables before running the sample. 
  
 // Details of designing text prompts for supported large language models: 
  
 // https://cloud.google.com/vertex-ai/docs/generative-ai/text/text-overview 
  
 String 
  
 instance 
  
 = 
  
 "{ \"prompt\": " 
  
 + 
  
 "\"Give me ten interview questions for the role of program manager.\"}" 
 ; 
  
 String 
  
 parameters 
  
 = 
  
 "{\n" 
  
 + 
  
 "  \"temperature\": 0.2,\n" 
  
 + 
  
 "  \"maxOutputTokens\": 256,\n" 
  
 + 
  
 "  \"topP\": 0.95,\n" 
  
 + 
  
 "  \"topK\": 40\n" 
  
 + 
  
 "}" 
 ; 
  
 String 
  
 project 
  
 = 
  
 "YOUR_PROJECT_ID" 
 ; 
  
 String 
  
 location 
  
 = 
  
 "us-central1" 
 ; 
  
 String 
  
 publisher 
  
 = 
  
 "google" 
 ; 
  
 String 
  
 model 
  
 = 
  
 "text-bison@001" 
 ; 
  
 predictTextPrompt 
 ( 
 instance 
 , 
  
 parameters 
 , 
  
 project 
 , 
  
 location 
 , 
  
 publisher 
 , 
  
 model 
 ); 
  
 } 
  
 // Get a text prompt from a supported text model 
  
 public 
  
 static 
  
 void 
  
 predictTextPrompt 
 ( 
  
 String 
  
 instance 
 , 
  
 String 
  
 parameters 
 , 
  
 String 
  
 project 
 , 
  
 String 
  
 location 
 , 
  
 String 
  
 publisher 
 , 
  
 String 
  
 model 
 ) 
  
 throws 
  
 IOException 
  
 { 
  
 String 
  
 endpoint 
  
 = 
  
 String 
 . 
 format 
 ( 
 "%s-aiplatform.googleapis.com:443" 
 , 
  
 location 
 ); 
  
  PredictionServiceSettings 
 
  
 predictionServiceSettings 
  
 = 
  
  PredictionServiceSettings 
 
 . 
 newBuilder 
 (). 
 setEndpoint 
 ( 
 endpoint 
 ). 
 build 
 (); 
  
 // Initialize client that will be used to send requests. This client only needs to be created 
  
 // once, and can be reused for multiple requests. 
  
 try 
  
 ( 
  PredictionServiceClient 
 
  
 predictionServiceClient 
  
 = 
  
  PredictionServiceClient 
 
 . 
 create 
 ( 
 predictionServiceSettings 
 )) 
  
 { 
  
 final 
  
  EndpointName 
 
  
 endpointName 
  
 = 
  
  EndpointName 
 
 . 
  ofProjectLocationPublisherModelName 
 
 ( 
 project 
 , 
  
 location 
 , 
  
 publisher 
 , 
  
 model 
 ); 
  
 // Initialize client that will be used to send requests. This client only needs to be created 
  
 // once, and can be reused for multiple requests. 
  
  Value 
 
 . 
 Builder 
  
 instanceValue 
  
 = 
  
  Value 
 
 . 
 newBuilder 
 (); 
  
  JsonFormat 
 
 . 
 parser 
 (). 
 merge 
 ( 
 instance 
 , 
  
 instanceValue 
 ); 
  
  List<Value> 
 
  
 instances 
  
 = 
  
 new 
  
 ArrayList 
<> (); 
  
 instances 
 . 
 add 
 ( 
 instanceValue 
 . 
 build 
 ()); 
  
 // Use Value.Builder to convert instance to a dynamically typed value that can be 
  
 // processed by the service. 
  
  Value 
 
 . 
 Builder 
  
 parameterValueBuilder 
  
 = 
  
  Value 
 
 . 
 newBuilder 
 (); 
  
  JsonFormat 
 
 . 
 parser 
 (). 
 merge 
 ( 
 parameters 
 , 
  
 parameterValueBuilder 
 ); 
  
  Value 
 
  
 parameterValue 
  
 = 
  
 parameterValueBuilder 
 . 
 build 
 (); 
  
  PredictResponse 
 
  
 predictResponse 
  
 = 
  
 predictionServiceClient 
 . 
 predict 
 ( 
 endpointName 
 , 
  
 instances 
 , 
  
 parameterValue 
 ); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "Predict Response" 
 ); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 predictResponse 
 ); 
  
 } 
  
 } 
 } 
 

Ruby

Before trying this sample, follow the Ruby setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Ruby API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  require 
  
 "google/cloud/ai_platform/v1" 
 ## 
 # Vertex AI Predict Text Prompt 
 # 
 # @param project_id [String] Your Google Cloud project (e.g. "my-project") 
 # @param location_id [String] Your Processor Location (e.g. "us-central1") 
 # @param publisher [String] The Model Publisher (e.g. "google") 
 # @param model [String] The Model Identifier (e.g. "text-bison@001") 
 # 
 def 
  
 predict_text_prompt 
  
 project_id 
 :, 
  
 location_id 
 :, 
  
 publisher 
 :, 
  
 model 
 : 
  
 # Create the Vertex AI client. 
  
 client 
  
 = 
  
 :: 
 Google 
 :: 
 Cloud 
 :: 
 AIPlatform 
 :: 
 V1 
 :: 
 PredictionService 
 :: 
 Client 
 . 
 new 
  
 do 
  
 | 
 config 
 | 
  
 config 
 . 
 endpoint 
  
 = 
  
 " 
 #{ 
 location_id 
 } 
 -aiplatform.googleapis.com" 
  
 end 
  
 # Build the resource name from the project. 
  
 endpoint 
  
 = 
  
 client 
 . 
 endpoint_path 
 ( 
  
 project 
 : 
  
 project_id 
 , 
  
 location 
 : 
  
 location_id 
 , 
  
 publisher 
 : 
  
 publisher 
 , 
  
 model 
 : 
  
 model 
  
 ) 
  
 prompt 
  
 = 
  
 "Give me ten interview questions for the role of program manager." 
  
 # Initialize the request arguments 
  
 instance 
  
 = 
  
 Google 
 :: 
 Protobuf 
 :: 
  Value 
 
 . 
 new 
 ( 
  
 struct_value 
 : 
  
 Google 
 :: 
 Protobuf 
 :: 
  Struct 
 
 . 
 new 
 ( 
  
 fields 
 : 
  
 { 
  
 "prompt" 
  
 = 
>  
 Google 
 :: 
 Protobuf 
 :: 
 Value 
 . 
 new 
 ( 
  
 string_value 
 : 
  
 prompt 
  
 ) 
  
 } 
  
 ) 
  
 ) 
  
 instances 
  
 = 
  
 [ 
 instance 
 ] 
  
 parameters 
  
 = 
  
 Google 
 :: 
 Protobuf 
 :: 
  Value 
 
 . 
 new 
 ( 
  
 struct_value 
 : 
  
 Google 
 :: 
 Protobuf 
 :: 
  Struct 
 
 . 
 new 
 ( 
  
 fields 
 : 
  
 { 
  
 "temperature" 
  
 = 
>  
 Google 
 :: 
 Protobuf 
 :: 
 Value 
 . 
 new 
 ( 
 number_value 
 : 
  
 0 
 . 
 2 
 ), 
  
 "maxOutputTokens" 
  
 = 
>  
 Google 
 :: 
 Protobuf 
 :: 
 Value 
 . 
 new 
 ( 
 number_value 
 : 
  
 256 
 ), 
  
 "topP" 
  
 = 
>  
 Google 
 :: 
 Protobuf 
 :: 
 Value 
 . 
 new 
 ( 
 number_value 
 : 
  
 0 
 . 
 95 
 ), 
  
 "topK" 
  
 = 
>  
 Google 
 :: 
 Protobuf 
 :: 
 Value 
 . 
 new 
 ( 
 number_value 
 : 
  
 40 
 ) 
  
 } 
  
 ) 
  
 ) 
  
 # Make the prediction request 
  
 response 
  
 = 
  
 client 
 . 
 predict 
  
 endpoint 
 : 
  
 endpoint 
 , 
  
 instances 
 : 
  
 instances 
 , 
  
 parameters 
 : 
  
 parameters 
  
 # Handle the prediction response 
  
 puts 
  
 "Predict Response" 
  
 puts 
  
 response 
 end 
 

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser .

Create a Mobile Website
View Site in Mobile | Classic
Share by: