Create a data labeling job for video

Creates a data labeling job for video using the create_data_labeling_job method.

Code sample

Java

Before trying this sample, follow the Java setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Java API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  import 
  
 com.google.cloud.aiplatform.v1. DataLabelingJob 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. DatasetName 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. JobServiceClient 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. JobServiceSettings 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. LocationName 
 
 ; 
 import 
  
 com.google.protobuf. Value 
 
 ; 
 import 
  
 com.google.protobuf.util. JsonFormat 
 
 ; 
 import 
  
 com.google.type. Money 
 
 ; 
 import 
  
 java.io.IOException 
 ; 
 import 
  
 java.util.Map 
 ; 
 public 
  
 class 
 CreateDataLabelingJobVideoSample 
  
 { 
  
 public 
  
 static 
  
 void 
  
 main 
 ( 
 String 
 [] 
  
 args 
 ) 
  
 throws 
  
 IOException 
  
 { 
  
 // TODO(developer): Replace these variables before running the sample. 
  
 String 
  
 project 
  
 = 
  
 "YOUR_PROJECT_ID" 
 ; 
  
 String 
  
 displayName 
  
 = 
  
 "YOUR_DATA_LABELING_DISPLAY_NAME" 
 ; 
  
 String 
  
 datasetId 
  
 = 
  
 "YOUR_DATASET_ID" 
 ; 
  
 String 
  
 instructionUri 
  
 = 
  
 "gs://YOUR_GCS_SOURCE_BUCKET/path_to_your_data_labeling_source/file.pdf" 
 ; 
  
 String 
  
 annotationSpec 
  
 = 
  
 "YOUR_ANNOTATION_SPEC" 
 ; 
  
 createDataLabelingJobVideo 
 ( 
 project 
 , 
  
 displayName 
 , 
  
 datasetId 
 , 
  
 instructionUri 
 , 
  
 annotationSpec 
 ); 
  
 } 
  
 static 
  
 void 
  
 createDataLabelingJobVideo 
 ( 
  
 String 
  
 project 
 , 
  
 String 
  
 displayName 
 , 
  
 String 
  
 datasetId 
 , 
  
 String 
  
 instructionUri 
 , 
  
 String 
  
 annotationSpec 
 ) 
  
 throws 
  
 IOException 
  
 { 
  
  JobServiceSettings 
 
  
 jobServiceSettings 
  
 = 
  
  JobServiceSettings 
 
 . 
 newBuilder 
 () 
  
 . 
 setEndpoint 
 ( 
 "us-central1-aiplatform.googleapis.com:443" 
 ) 
  
 . 
 build 
 (); 
  
 // Initialize client that will be used to send requests. This client only needs to be created 
  
 // once, and can be reused for multiple requests. After completing all of your requests, call 
  
 // the "close" method on the client to safely clean up any remaining background resources. 
  
 try 
  
 ( 
  JobServiceClient 
 
  
 jobServiceClient 
  
 = 
  
  JobServiceClient 
 
 . 
 create 
 ( 
 jobServiceSettings 
 )) 
  
 { 
  
 String 
  
 location 
  
 = 
  
 "us-central1" 
 ; 
  
  LocationName 
 
  
 locationName 
  
 = 
  
  LocationName 
 
 . 
 of 
 ( 
 project 
 , 
  
 location 
 ); 
  
 String 
  
 jsonString 
  
 = 
  
 "{\"annotation_specs\": [ " 
  
 + 
  
 annotationSpec 
  
 + 
  
 "]}" 
 ; 
  
  Value 
 
 . 
 Builder 
  
 annotationSpecValue 
  
 = 
  
  Value 
 
 . 
 newBuilder 
 (); 
  
  JsonFormat 
 
 . 
 parser 
 (). 
 merge 
 ( 
 jsonString 
 , 
  
 annotationSpecValue 
 ); 
  
  DatasetName 
 
  
 datasetName 
  
 = 
  
  DatasetName 
 
 . 
 of 
 ( 
 project 
 , 
  
 location 
 , 
  
 datasetId 
 ); 
  
  DataLabelingJob 
 
  
 dataLabelingJob 
  
 = 
  
  DataLabelingJob 
 
 . 
 newBuilder 
 () 
  
 . 
 setDisplayName 
 ( 
 displayName 
 ) 
  
 . 
  setLabelerCount 
 
 ( 
 1 
 ) 
  
 . 
  setInstructionUri 
 
 ( 
 instructionUri 
 ) 
  
 . 
  setInputsSchemaUri 
 
 ( 
  
 "gs://google-cloud-aiplatform/schema/datalabelingjob/inputs/" 
  
 + 
  
 "video_classification.yaml" 
 ) 
  
 . 
 addDatasets 
 ( 
 datasetName 
 . 
  toString 
 
 ()) 
  
 . 
 setInputs 
 ( 
 annotationSpecValue 
 ) 
  
 . 
 putAnnotationLabels 
 ( 
  
 "aiplatform.googleapis.com/annotation_set_name" 
 , 
  
 "my_test_saved_query" 
 ) 
  
 . 
 build 
 (); 
  
  DataLabelingJob 
 
  
 dataLabelingJobResponse 
  
 = 
  
 jobServiceClient 
 . 
 createDataLabelingJob 
 ( 
 locationName 
 , 
  
 dataLabelingJob 
 ); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "Create Data Labeling Job Video Response" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tName: %s\n" 
 , 
  
 dataLabelingJobResponse 
 . 
  getName 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tDisplay Name: %s\n" 
 , 
  
 dataLabelingJobResponse 
 . 
  getDisplayName 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tDatasets: %s\n" 
 , 
  
 dataLabelingJobResponse 
 . 
  getDatasetsList 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tLabeler Count: %s\n" 
 , 
  
 dataLabelingJobResponse 
 . 
  getLabelerCount 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tInstruction Uri: %s\n" 
 , 
  
 dataLabelingJobResponse 
 . 
  getInstructionUri 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tInputs Schema Uri: %s\n" 
 , 
  
 dataLabelingJobResponse 
 . 
  getInputsSchemaUri 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tInputs: %s\n" 
 , 
  
 dataLabelingJobResponse 
 . 
  getInputs 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tState: %s\n" 
 , 
  
 dataLabelingJobResponse 
 . 
  getState 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tLabeling Progress: %s\n" 
 , 
  
 dataLabelingJobResponse 
 . 
  getLabelingProgress 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tCreate Time: %s\n" 
 , 
  
 dataLabelingJobResponse 
 . 
  getCreateTime 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tUpdate Time: %s\n" 
 , 
  
 dataLabelingJobResponse 
 . 
  getUpdateTime 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tLabels: %s\n" 
 , 
  
 dataLabelingJobResponse 
 . 
  getLabelsMap 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
  
 "\tSpecialist Pools: %s\n" 
 , 
  
 dataLabelingJobResponse 
 . 
  getSpecialistPoolsList 
 
 ()); 
  
 for 
  
 ( 
 Map 
 . 
 Entry<String 
 , 
  
 String 
>  
 annotationLabelMap 
  
 : 
  
 dataLabelingJobResponse 
 . 
 getAnnotationLabelsMap 
 (). 
 entrySet 
 ()) 
  
 { 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\tAnnotation Level" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tkey: %s\n" 
 , 
  
 annotationLabelMap 
 . 
 getKey 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tvalue: %s\n" 
 , 
  
 annotationLabelMap 
 . 
 getValue 
 ()); 
  
 } 
  
 Money 
  
 money 
  
 = 
  
 dataLabelingJobResponse 
 . 
 getCurrentSpend 
 (); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "\tCurrent Spend" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tCurrency Code: %s\n" 
 , 
  
 money 
 . 
 getCurrencyCode 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tUnits: %s\n" 
 , 
  
 money 
 . 
 getUnits 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\t\tNanos: %s\n" 
 , 
  
 money 
 . 
 getNanos 
 ()); 
  
 } 
  
 } 
 } 
 

Python

Before trying this sample, follow the Python setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Python API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  from 
  
 google.cloud 
  
 import 
 aiplatform 
 from 
  
 google.protobuf 
  
 import 
 json_format 
 from 
  
 google.protobuf.struct_pb2 
  
 import 
 Value 
 def 
  
 create_data_labeling_job_video_sample 
 ( 
 project 
 : 
 str 
 , 
 display_name 
 : 
 str 
 , 
 dataset 
 : 
 str 
 , 
 instruction_uri 
 : 
 str 
 , 
 annotation_spec 
 : 
 str 
 , 
 location 
 : 
 str 
 = 
 "us-central1" 
 , 
 api_endpoint 
 : 
 str 
 = 
 "us-central1-aiplatform.googleapis.com" 
 , 
 ): 
 # The AI Platform services require regional API endpoints. 
 client_options 
 = 
 { 
 "api_endpoint" 
 : 
 api_endpoint 
 } 
 # Initialize client that will be used to create and send requests. 
 # This client only needs to be created once, and can be reused for multiple requests. 
 client 
 = 
 aiplatform 
 . 
 gapic 
 . 
  JobServiceClient 
 
 ( 
 client_options 
 = 
 client_options 
 ) 
 inputs_dict 
 = 
 { 
 "annotation_specs" 
 : 
 [ 
 annotation_spec 
 ]} 
 inputs 
 = 
 json_format 
 . 
 ParseDict 
 ( 
 inputs_dict 
 , 
 Value 
 ()) 
 data_labeling_job 
 = 
 { 
 "display_name" 
 : 
 display_name 
 , 
 # Full resource name: projects/{project_id}/locations/{location}/datasets/{dataset_id} 
 "datasets" 
 : 
 [ 
 dataset 
 ], 
 # labeler_count must be 1, 3, or 5 
 "labeler_count" 
 : 
 1 
 , 
 "instruction_uri" 
 : 
 instruction_uri 
 , 
 "inputs_schema_uri" 
 : 
 "gs://google-cloud-aiplatform/schema/datalabelingjob/inputs/video_classification_1.0.0.yaml" 
 , 
 "inputs" 
 : 
 inputs 
 , 
 "annotation_labels" 
 : 
 { 
 "aiplatform.googleapis.com/annotation_set_name" 
 : 
 "my_test_saved_query" 
 }, 
 } 
 parent 
 = 
 f 
 "projects/ 
 { 
 project 
 } 
 /locations/ 
 { 
 location 
 } 
 " 
 response 
 = 
 client 
 . 
  create_data_labeling_job 
 
 ( 
 parent 
 = 
 parent 
 , 
 data_labeling_job 
 = 
 data_labeling_job 
 ) 
 print 
 ( 
 "response:" 
 , 
 response 
 ) 
 

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser .

Create a Mobile Website
View Site in Mobile | Classic
Share by: