Delete a dataset

Deletes a dataset using the delete_dataset method.

Code sample

Go

Before trying this sample, follow the Go setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Go API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  import 
  
 ( 
  
 "context" 
  
 "fmt" 
  
 "io" 
  
 aiplatform 
  
 "cloud.google.com/go/aiplatform/apiv1" 
  
 aiplatformpb 
  
 "cloud.google.com/go/aiplatform/apiv1/aiplatformpb" 
  
 "google.golang.org/api/option" 
 ) 
 func 
  
 deleteDataset 
 ( 
 w 
  
 io 
 . 
 Writer 
 , 
  
 projectID 
 , 
  
 location 
 , 
  
 datasetID 
  
 string 
 ) 
  
 error 
  
 { 
  
 // projectID := "my-project" 
  
 // location := "us-central1" 
  
 // datasetID := "my-dataset" 
  
 apiEndpoint 
  
 := 
  
 fmt 
 . 
 Sprintf 
 ( 
 "%s-aiplatform.googleapis.com:443" 
 , 
  
 location 
 ) 
  
 clientOption 
  
 := 
  
 option 
 . 
 WithEndpoint 
 ( 
 apiEndpoint 
 ) 
  
 ctx 
  
 := 
  
 context 
 . 
 Background 
 () 
  
 aiplatformService 
 , 
  
 err 
  
 := 
  
 aiplatform 
 . 
  NewDatasetClient 
 
 ( 
 ctx 
 , 
  
 clientOption 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 return 
  
 err 
  
 } 
  
 defer 
  
 aiplatformService 
 . 
 Close 
 () 
  
 req 
  
 := 
  
& aiplatformpb 
 . 
 DeleteDatasetRequest 
 { 
  
 Name 
 : 
  
 fmt 
 . 
 Sprintf 
 ( 
 "projects/%s/locations/%s/datasets/%s" 
 , 
  
 projectID 
 , 
  
 location 
 , 
  
 datasetID 
 ), 
  
 } 
  
 op 
 , 
  
 err 
  
 := 
  
 aiplatformService 
 . 
 DeleteDataset 
 ( 
 ctx 
 , 
  
 req 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 return 
  
 err 
  
 } 
  
 err 
  
 = 
  
 op 
 . 
 Wait 
 ( 
 ctx 
 ) 
  
 if 
  
 err 
  
 != 
  
 nil 
  
 { 
  
 return 
  
 ctx 
 . 
 Err 
 () 
  
 } 
  
 fmt 
 . 
 Fprintf 
 ( 
 w 
 , 
  
 "Deleted dataset: %s\n" 
 , 
  
 datasetID 
 ) 
  
 return 
  
 nil 
 } 
 

Java

Before trying this sample, follow the Java setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Java API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  import 
  
 com.google.api.gax.longrunning. OperationFuture 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. DatasetName 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. DatasetServiceClient 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. DatasetServiceSettings 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. DeleteOperationMetadata 
 
 ; 
 import 
  
 com.google.protobuf. Empty 
 
 ; 
 import 
  
 java.io.IOException 
 ; 
 import 
  
 java.util.concurrent.ExecutionException 
 ; 
 import 
  
 java.util.concurrent.TimeUnit 
 ; 
 import 
  
 java.util.concurrent.TimeoutException 
 ; 
 public 
  
 class 
 DeleteDatasetSample 
  
 { 
  
 public 
  
 static 
  
 void 
  
 main 
 ( 
 String 
 [] 
  
 args 
 ) 
  
 throws 
  
 IOException 
 , 
  
 InterruptedException 
 , 
  
 ExecutionException 
 , 
  
 TimeoutException 
  
 { 
  
 // TODO(developer): Replace these variables before running the sample. 
  
 String 
  
 project 
  
 = 
  
 "YOUR_PROJECT_ID" 
 ; 
  
 String 
  
 datasetId 
  
 = 
  
 "YOUR_DATASET_ID" 
 ; 
  
 deleteDatasetSample 
 ( 
 project 
 , 
  
 datasetId 
 ); 
  
 } 
  
 static 
  
 void 
  
 deleteDatasetSample 
 ( 
 String 
  
 project 
 , 
  
 String 
  
 datasetId 
 ) 
  
 throws 
  
 IOException 
 , 
  
 InterruptedException 
 , 
  
 ExecutionException 
 , 
  
 TimeoutException 
  
 { 
  
  DatasetServiceSettings 
 
  
 datasetServiceSettings 
  
 = 
  
  DatasetServiceSettings 
 
 . 
 newBuilder 
 () 
  
 . 
 setEndpoint 
 ( 
 "us-central1-aiplatform.googleapis.com:443" 
 ) 
  
 . 
 build 
 (); 
  
 // Initialize client that will be used to send requests. This client only needs to be created 
  
 // once, and can be reused for multiple requests. After completing all of your requests, call 
  
 // the "close" method on the client to safely clean up any remaining background resources. 
  
 try 
  
 ( 
  DatasetServiceClient 
 
  
 datasetServiceClient 
  
 = 
  
  DatasetServiceClient 
 
 . 
 create 
 ( 
 datasetServiceSettings 
 )) 
  
 { 
  
 String 
  
 location 
  
 = 
  
 "us-central1" 
 ; 
  
  DatasetName 
 
  
 datasetName 
  
 = 
  
  DatasetName 
 
 . 
 of 
 ( 
 project 
 , 
  
 location 
 , 
  
 datasetId 
 ); 
  
 OperationFuture<Empty 
 , 
  
 DeleteOperationMetadata 
>  
 operationFuture 
  
 = 
  
 datasetServiceClient 
 . 
  deleteDatasetAsync 
 
 ( 
 datasetName 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "Operation name: %s\n" 
 , 
  
 operationFuture 
 . 
 getInitialFuture 
 (). 
 get 
 (). 
 getName 
 ()); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "Waiting for operation to finish..." 
 ); 
  
 operationFuture 
 . 
 get 
 ( 
 300 
 , 
  
 TimeUnit 
 . 
 SECONDS 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "Deleted Dataset." 
 ); 
  
 } 
  
 } 
 } 
 

Node.js

Before trying this sample, follow the Node.js setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Node.js API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  /** 
 * TODO(developer): Uncomment these variables before running the sample.\ 
 * (Not necessary if passing values as arguments) 
 */ 
 // const datasetId = 'YOUR_DATASET_ID'; 
 // const project = 'YOUR_PROJECT_ID'; 
 // const location = 'YOUR_PROJECT_LOCATION'; 
 // Imports the Google Cloud Dataset Service Client library 
 const 
  
 { 
 DatasetServiceClient 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/aiplatform 
' 
 ); 
 // Specifies the location of the api endpoint 
 const 
  
 clientOptions 
  
 = 
  
 { 
  
 apiEndpoint 
 : 
  
 'us-central1-aiplatform.googleapis.com' 
 , 
 }; 
 // Instantiates a client 
 const 
  
 datasetServiceClient 
  
 = 
  
 new 
  
  DatasetServiceClient 
 
 ( 
 clientOptions 
 ); 
 async 
  
 function 
  
 deleteDataset 
 () 
  
 { 
  
 // Configure the resource 
  
 const 
  
 name 
  
 = 
  
 datasetServiceClient 
 . 
 datasetPath 
 ( 
 project 
 , 
  
 location 
 , 
  
 datasetId 
 ); 
  
 const 
  
 request 
  
 = 
  
 { 
 name 
 }; 
  
 // Delete Dataset Request 
  
 const 
  
 [ 
 response 
 ] 
  
 = 
  
 await 
  
 datasetServiceClient 
 . 
 deleteDataset 
 ( 
 request 
 ); 
  
 console 
 . 
 log 
 ( 
 `Long running operation: 
 ${ 
 response 
 . 
 name 
 } 
 ` 
 ); 
  
 // Wait for operation to complete 
  
 await 
  
 response 
 . 
 promise 
 (); 
  
 const 
  
 result 
  
 = 
  
 response 
 . 
 result 
 ; 
  
 console 
 . 
 log 
 ( 
 'Delete dataset response:\n' 
 , 
  
 result 
 ); 
 } 
 deleteDataset 
 (); 
 

Python

Before trying this sample, follow the Python setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Python API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  from 
  
 google.cloud 
  
 import 
 aiplatform 
 def 
  
 delete_dataset_sample 
 ( 
 project 
 : 
 str 
 , 
 dataset_id 
 : 
 str 
 , 
 location 
 : 
 str 
 = 
 "us-central1" 
 , 
 api_endpoint 
 : 
 str 
 = 
 "us-central1-aiplatform.googleapis.com" 
 , 
 timeout 
 : 
 int 
 = 
 300 
 , 
 ): 
 # The AI Platform services require regional API endpoints. 
 client_options 
 = 
 { 
 "api_endpoint" 
 : 
 api_endpoint 
 } 
 # Initialize client that will be used to create and send requests. 
 # This client only needs to be created once, and can be reused for multiple requests. 
 client 
 = 
 aiplatform 
 . 
 gapic 
 . 
  DatasetServiceClient 
 
 ( 
 client_options 
 = 
 client_options 
 ) 
 name 
 = 
 client 
 . 
  dataset_path 
 
 ( 
 project 
 = 
 project 
 , 
 location 
 = 
 location 
 , 
 dataset 
 = 
 dataset_id 
 ) 
 response 
 = 
 client 
 . 
  delete_dataset 
 
 ( 
 name 
 = 
 name 
 ) 
 print 
 ( 
 "Long running operation:" 
 , 
 response 
 . 
 operation 
 . 
 name 
 ) 
 delete_dataset_response 
 = 
 response 
 . 
 result 
 ( 
 timeout 
 = 
 timeout 
 ) 
 print 
 ( 
 "delete_dataset_response:" 
 , 
 delete_dataset_response 
 ) 
 

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser .

Create a Mobile Website
View Site in Mobile | Classic
Share by: