Predict for image classification

Gets prediction for image classification using the predict method.

Code sample

Java

Before trying this sample, follow the Java setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Java API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  import 
  
 com.google.cloud.aiplatform.util. ValueConverter 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. EndpointName 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. PredictResponse 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. PredictionServiceClient 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. PredictionServiceSettings 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1.schema.predict. instance 
. ImageClassificationPredictionInstance 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1.schema.predict.params. ImageClassificationPredictionParams 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1.schema.predict.prediction. ClassificationPredictionResult 
 
 ; 
 import 
  
 com.google.protobuf. Value 
 
 ; 
 import 
  
 java.io.IOException 
 ; 
 import 
  
 java.nio.charset.StandardCharsets 
 ; 
 import 
  
 java.nio.file.Files 
 ; 
 import 
  
 java.nio.file.Paths 
 ; 
 import 
  
 java.util.ArrayList 
 ; 
 import 
  
 java.util.Base64 
 ; 
 import 
  
 java.util.List 
 ; 
 public 
  
 class 
 PredictImageClassificationSample 
  
 { 
  
 public 
  
 static 
  
 void 
  
 main 
 ( 
 String 
 [] 
  
 args 
 ) 
  
 throws 
  
 IOException 
  
 { 
  
 // TODO(developer): Replace these variables before running the sample. 
  
 String 
  
 project 
  
 = 
  
 "YOUR_PROJECT_ID" 
 ; 
  
 String 
  
 fileName 
  
 = 
  
 "YOUR_IMAGE_FILE_PATH" 
 ; 
  
 String 
  
 endpointId 
  
 = 
  
 "YOUR_ENDPOINT_ID" 
 ; 
  
 predictImageClassification 
 ( 
 project 
 , 
  
 fileName 
 , 
  
 endpointId 
 ); 
  
 } 
  
 static 
  
 void 
  
 predictImageClassification 
 ( 
 String 
  
 project 
 , 
  
 String 
  
 fileName 
 , 
  
 String 
  
 endpointId 
 ) 
  
 throws 
  
 IOException 
  
 { 
  
  PredictionServiceSettings 
 
  
 settings 
  
 = 
  
  PredictionServiceSettings 
 
 . 
 newBuilder 
 () 
  
 . 
 setEndpoint 
 ( 
 "us-central1-aiplatform.googleapis.com:443" 
 ) 
  
 . 
 build 
 (); 
  
 // Initialize client that will be used to send requests. This client only needs to be created 
  
 // once, and can be reused for multiple requests. After completing all of your requests, call 
  
 // the "close" method on the client to safely clean up any remaining background resources. 
  
 try 
  
 ( 
  PredictionServiceClient 
 
  
 predictionServiceClient 
  
 = 
  
  PredictionServiceClient 
 
 . 
 create 
 ( 
 settings 
 )) 
  
 { 
  
 String 
  
 location 
  
 = 
  
 "us-central1" 
 ; 
  
  EndpointName 
 
  
 endpointName 
  
 = 
  
  EndpointName 
 
 . 
 of 
 ( 
 project 
 , 
  
 location 
 , 
  
 endpointId 
 ); 
  
 byte 
 [] 
  
 contents 
  
 = 
  
 Base64 
 . 
 getEncoder 
 (). 
 encode 
 ( 
 Files 
 . 
 readAllBytes 
 ( 
 Paths 
 . 
 get 
 ( 
 fileName 
 ))); 
  
 String 
  
 content 
  
 = 
  
 new 
  
 String 
 ( 
 contents 
 , 
  
 StandardCharsets 
 . 
 UTF_8 
 ); 
  
  ImageClassificationPredictionInstance 
 
  
 predictionInstance 
  
 = 
  
  ImageClassificationPredictionInstance 
 
 . 
 newBuilder 
 (). 
 setContent 
 ( 
 content 
 ). 
 build 
 (); 
  
  List<Value> 
 
  
 instances 
  
 = 
  
 new 
  
 ArrayList 
<> (); 
  
 instances 
 . 
 add 
 ( 
  ValueConverter 
 
 . 
  toValue 
 
 ( 
 predictionInstance 
 )); 
  
  ImageClassificationPredictionParams 
 
  
 predictionParams 
  
 = 
  
  ImageClassificationPredictionParams 
 
 . 
 newBuilder 
 () 
  
 . 
 setConfidenceThreshold 
 (( 
 float 
 ) 
  
 0.5 
 ) 
  
 . 
 setMaxPredictions 
 ( 
 5 
 ) 
  
 . 
 build 
 (); 
  
  PredictResponse 
 
  
 predictResponse 
  
 = 
  
 predictionServiceClient 
 . 
 predict 
 ( 
  
 endpointName 
 , 
  
 instances 
 , 
  
  ValueConverter 
 
 . 
  toValue 
 
 ( 
 predictionParams 
 )); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "Predict Image Classification Response" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "\tDeployed Model Id: %s\n" 
 , 
  
 predictResponse 
 . 
  getDeployedModelId 
 
 ()); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "Predictions" 
 ); 
  
 for 
  
 ( 
  Value 
 
  
 prediction 
  
 : 
  
 predictResponse 
 . 
  getPredictionsList 
 
 ()) 
  
 { 
  
  ClassificationPredictionResult 
 
 . 
 Builder 
  
 resultBuilder 
  
 = 
  
  ClassificationPredictionResult 
 
 . 
 newBuilder 
 (); 
  
 // Display names and confidences values correspond to 
  
 // IDs in the ID list. 
  
  ClassificationPredictionResult 
 
  
 result 
  
 = 
  
 ( 
  ClassificationPredictionResult 
 
 ) 
  
  ValueConverter 
 
 . 
 fromValue 
 ( 
 resultBuilder 
 , 
  
 prediction 
 ); 
  
 int 
  
 counter 
  
 = 
  
 0 
 ; 
  
 for 
  
 ( 
 Long 
  
 id 
  
 : 
  
 result 
 . 
  getIdsList 
 
 ()) 
  
 { 
  
 System 
 . 
 out 
 . 
 printf 
 ( 
 "Label ID: %d\n" 
 , 
  
 id 
 ); 
  
 System 
 . 
 out 
 . 
 printf 
 ( 
 "Label: %s\n" 
 , 
  
 result 
 . 
  getDisplayNames 
 
 ( 
 counter 
 )); 
  
 System 
 . 
 out 
 . 
 printf 
 ( 
 "Confidence: %.4f\n" 
 , 
  
 result 
 . 
  getConfidences 
 
 ( 
 counter 
 )); 
  
 counter 
 ++ 
 ; 
  
 } 
  
 } 
  
 } 
  
 } 
 } 
 

Node.js

Before trying this sample, follow the Node.js setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Node.js API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  /** 
 * TODO(developer): Uncomment these variables before running the sample.\ 
 * (Not necessary if passing values as arguments) 
 */ 
 // const filename = "YOUR_PREDICTION_FILE_NAME"; 
 // const endpointId = "YOUR_ENDPOINT_ID"; 
 // const project = 'YOUR_PROJECT_ID'; 
 // const location = 'YOUR_PROJECT_LOCATION'; 
 const 
  
 aiplatform 
  
 = 
  
 require 
 ( 
 ' @google-cloud/aiplatform 
' 
 ); 
 const 
  
 { 
 instance 
 , 
  
 params 
 , 
  
 prediction 
 } 
  
 = 
  
 aiplatform 
 . 
 protos 
 . 
 google 
 . 
 cloud 
 . 
 aiplatform 
 . 
 v1 
 . 
 schema 
 . 
 predict 
 ; 
 // Imports the Google Cloud Prediction Service Client library 
 const 
  
 { 
 PredictionServiceClient 
 } 
  
 = 
  
 aiplatform 
 . 
 v1 
 ; 
 // Specifies the location of the api endpoint 
 const 
  
 clientOptions 
  
 = 
  
 { 
  
 apiEndpoint 
 : 
  
 'us-central1-aiplatform.googleapis.com' 
 , 
 }; 
 // Instantiates a client 
 const 
  
 predictionServiceClient 
  
 = 
  
 new 
  
  PredictionServiceClient 
 
 ( 
 clientOptions 
 ); 
 async 
  
 function 
  
 predictImageClassification 
 () 
  
 { 
  
 // Configure the endpoint resource 
  
 const 
  
 endpoint 
  
 = 
  
 `projects/ 
 ${ 
 project 
 } 
 /locations/ 
 ${ 
 location 
 } 
 /endpoints/ 
 ${ 
 endpointId 
 } 
 ` 
 ; 
  
 const 
  
 parametersObj 
  
 = 
  
 new 
  
 params 
 . 
 ImageClassificationPredictionParams 
 ({ 
  
 confidenceThreshold 
 : 
  
 0.5 
 , 
  
 maxPredictions 
 : 
  
 5 
 , 
  
 }); 
  
 const 
  
 parameters 
  
 = 
  
 parametersObj 
 . 
 toValue 
 (); 
  
 const 
  
 fs 
  
 = 
  
 require 
 ( 
 'fs' 
 ); 
  
 const 
  
 image 
  
 = 
  
 fs 
 . 
 readFileSync 
 ( 
 filename 
 , 
  
 'base64' 
 ); 
  
 const 
  
 instanceObj 
  
 = 
  
 new 
  
 instance 
 . 
 ImageClassificationPredictionInstance 
 ({ 
  
 content 
 : 
  
 image 
 , 
  
 }); 
  
 const 
  
 instanceValue 
  
 = 
  
 instanceObj 
 . 
 toValue 
 (); 
  
 const 
  
 instances 
  
 = 
  
 [ 
 instanceValue 
 ]; 
  
 const 
  
 request 
  
 = 
  
 { 
  
 endpoint 
 , 
  
 instances 
 , 
  
 parameters 
 , 
  
 }; 
  
 // Predict request 
  
 const 
  
 [ 
 response 
 ] 
  
 = 
  
 await 
  
 predictionServiceClient 
 . 
 predict 
 ( 
 request 
 ); 
  
 console 
 . 
 log 
 ( 
 'Predict image classification response' 
 ); 
  
 console 
 . 
 log 
 ( 
 `\tDeployed model id : 
 ${ 
 response 
 . 
 deployedModelId 
 } 
 ` 
 ); 
  
 const 
  
 predictions 
  
 = 
  
 response 
 . 
 predictions 
 ; 
  
 console 
 . 
 log 
 ( 
 '\tPredictions :' 
 ); 
  
 for 
  
 ( 
 const 
  
 predictionValue 
  
 of 
  
 predictions 
 ) 
  
 { 
  
 const 
  
 predictionResultObj 
  
 = 
  
 prediction 
 . 
 ClassificationPredictionResult 
 . 
 fromValue 
 ( 
 predictionValue 
 ); 
  
 for 
  
 ( 
 const 
  
 [ 
 i 
 , 
  
 label 
 ] 
  
 of 
  
 predictionResultObj 
 . 
 displayNames 
 . 
 entries 
 ()) 
  
 { 
  
 console 
 . 
 log 
 ( 
 `\tDisplay name: 
 ${ 
 label 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
 `\tConfidences: 
 ${ 
 predictionResultObj 
 . 
 confidences 
 [ 
 i 
 ] 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
 `\tIDs: 
 ${ 
 predictionResultObj 
 . 
 ids 
 [ 
 i 
 ] 
 } 
 \n\n` 
 ); 
  
 } 
  
 } 
 } 
 predictImageClassification 
 (); 
 

Python

Before trying this sample, follow the Python setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Python API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  import 
  
 base64 
 from 
  
 google.cloud 
  
 import 
 aiplatform 
 from 
  
 google.cloud.aiplatform.gapic.schema 
  
 import 
 predict 
 def 
  
 predict_image_classification_sample 
 ( 
 project 
 : 
 str 
 , 
 endpoint_id 
 : 
 str 
 , 
 filename 
 : 
 str 
 , 
 location 
 : 
 str 
 = 
 "us-central1" 
 , 
 api_endpoint 
 : 
 str 
 = 
 "us-central1-aiplatform.googleapis.com" 
 , 
 ): 
 # The AI Platform services require regional API endpoints. 
 client_options 
 = 
 { 
 "api_endpoint" 
 : 
 api_endpoint 
 } 
 # Initialize client that will be used to create and send requests. 
 # This client only needs to be created once, and can be reused for multiple requests. 
 client 
 = 
 aiplatform 
 . 
 gapic 
 . 
  PredictionServiceClient 
 
 ( 
 client_options 
 = 
 client_options 
 ) 
 with 
 open 
 ( 
 filename 
 , 
 "rb" 
 ) 
 as 
 f 
 : 
 file_content 
 = 
 f 
 . 
 read 
 () 
 # The format of each instance should conform to the deployed model's prediction input schema. 
 encoded_content 
 = 
 base64 
 . 
 b64encode 
 ( 
 file_content 
 ) 
 . 
 decode 
 ( 
 "utf-8" 
 ) 
 instance 
 = 
 predict 
 . 
 instance 
 . 
  ImageClassificationPredictionInstance 
 
 ( 
 content 
 = 
 encoded_content 
 , 
 ) 
 . 
 to_value 
 () 
 instances 
 = 
 [ 
 instance 
 ] 
 # See gs://google-cloud-aiplatform/schema/predict/params/image_classification_1.0.0.yaml for the format of the parameters. 
 parameters 
 = 
 predict 
 . 
 params 
 . 
  ImageClassificationPredictionParams 
 
 ( 
 confidence_threshold 
 = 
 0.5 
 , 
 max_predictions 
 = 
 5 
 , 
 ) 
 . 
 to_value 
 () 
 endpoint 
 = 
 client 
 . 
  endpoint_path 
 
 ( 
 project 
 = 
 project 
 , 
 location 
 = 
 location 
 , 
 endpoint 
 = 
 endpoint_id 
 ) 
 response 
 = 
 client 
 . 
  predict 
 
 ( 
 endpoint 
 = 
 endpoint 
 , 
 instances 
 = 
 instances 
 , 
 parameters 
 = 
 parameters 
 ) 
 print 
 ( 
 "response" 
 ) 
 print 
 ( 
 " deployed_model_id:" 
 , 
 response 
 . 
 deployed_model_id 
 ) 
 # See gs://google-cloud-aiplatform/schema/predict/prediction/image_classification_1.0.0.yaml for the format of the predictions. 
 predictions 
 = 
 response 
 . 
 predictions 
 for 
 prediction 
 in 
 predictions 
 : 
 print 
 ( 
 " prediction:" 
 , 
 dict 
 ( 
 prediction 
 )) 
 

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser .

Create a Mobile Website
View Site in Mobile | Classic
Share by: