Get a model evaluation

Gets a model evaluation using the get_model_evaluation method.

Code sample

Java

Before trying this sample, follow the Java setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Java API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  import 
  
 com.google.cloud.aiplatform.v1. ModelEvaluation 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. ModelEvaluationName 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. ModelServiceClient 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. ModelServiceSettings 
 
 ; 
 import 
  
 java.io.IOException 
 ; 
 public 
  
 class 
 GetModelEvaluationSample 
  
 { 
  
 public 
  
 static 
  
 void 
  
 main 
 ( 
 String 
 [] 
  
 args 
 ) 
  
 throws 
  
 IOException 
  
 { 
  
 // TODO(developer): Replace these variables before running the sample. 
  
 String 
  
 project 
  
 = 
  
 "YOUR_PROJECT_ID" 
 ; 
  
 String 
  
 modelId 
  
 = 
  
 "YOUR_MODEL_ID" 
 ; 
  
 String 
  
 evaluationId 
  
 = 
  
 "YOUR_EVALUATION_ID" 
 ; 
  
 getModelEvaluationSample 
 ( 
 project 
 , 
  
 modelId 
 , 
  
 evaluationId 
 ); 
  
 } 
  
 static 
  
 void 
  
 getModelEvaluationSample 
 ( 
 String 
  
 project 
 , 
  
 String 
  
 modelId 
 , 
  
 String 
  
 evaluationId 
 ) 
  
 throws 
  
 IOException 
  
 { 
  
  ModelServiceSettings 
 
  
 modelServiceSettings 
  
 = 
  
  ModelServiceSettings 
 
 . 
 newBuilder 
 () 
  
 . 
 setEndpoint 
 ( 
 "us-central1-aiplatform.googleapis.com:443" 
 ) 
  
 . 
 build 
 (); 
  
 // Initialize client that will be used to send requests. This client only needs to be created 
  
 // once, and can be reused for multiple requests. After completing all of your requests, call 
  
 // the "close" method on the client to safely clean up any remaining background resources. 
  
 try 
  
 ( 
  ModelServiceClient 
 
  
 modelServiceClient 
  
 = 
  
  ModelServiceClient 
 
 . 
 create 
 ( 
 modelServiceSettings 
 )) 
  
 { 
  
 String 
  
 location 
  
 = 
  
 "us-central1" 
 ; 
  
  ModelEvaluationName 
 
  
 modelEvaluationName 
  
 = 
  
  ModelEvaluationName 
 
 . 
 of 
 ( 
 project 
 , 
  
 location 
 , 
  
 modelId 
 , 
  
 evaluationId 
 ); 
  
  ModelEvaluation 
 
  
 modelEvaluation 
  
 = 
  
 modelServiceClient 
 . 
 getModelEvaluation 
 ( 
 modelEvaluationName 
 ); 
  
 System 
 . 
 out 
 . 
 println 
 ( 
 "Get Model Evaluation Response" 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "Model Name: %s\n" 
 , 
  
 modelEvaluation 
 . 
  getName 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "Metrics Schema Uri: %s\n" 
 , 
  
 modelEvaluation 
 . 
  getMetricsSchemaUri 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "Metrics: %s\n" 
 , 
  
 modelEvaluation 
 . 
  getMetrics 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "Create Time: %s\n" 
 , 
  
 modelEvaluation 
 . 
  getCreateTime 
 
 ()); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "Slice Dimensions: %s\n" 
 , 
  
 modelEvaluation 
 . 
  getSliceDimensionsList 
 
 ()); 
  
 } 
  
 } 
 } 
 

Python

Before trying this sample, follow the Python setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Python API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  from 
  
 google.cloud 
  
 import 
 aiplatform 
 def 
  
 get_model_evaluation_sample 
 ( 
 project 
 : 
 str 
 , 
 model_id 
 : 
 str 
 , 
 evaluation_id 
 : 
 str 
 , 
 location 
 : 
 str 
 = 
 "us-central1" 
 , 
 api_endpoint 
 : 
 str 
 = 
 "us-central1-aiplatform.googleapis.com" 
 , 
 ): 
 # The AI Platform services require regional API endpoints. 
 client_options 
 = 
 { 
 "api_endpoint" 
 : 
 api_endpoint 
 } 
 # Initialize client that will be used to create and send requests. 
 # This client only needs to be created once, and can be reused for multiple requests. 
 client 
 = 
 aiplatform 
 . 
 gapic 
 . 
  ModelServiceClient 
 
 ( 
 client_options 
 = 
 client_options 
 ) 
 name 
 = 
 client 
 . 
  model_evaluation_path 
 
 ( 
 project 
 = 
 project 
 , 
 location 
 = 
 location 
 , 
 model 
 = 
 model_id 
 , 
 evaluation 
 = 
 evaluation_id 
 ) 
 response 
 = 
 client 
 . 
  get_model_evaluation 
 
 ( 
 name 
 = 
 name 
 ) 
 print 
 ( 
 "response:" 
 , 
 response 
 ) 
 

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser .

Create a Mobile Website
View Site in Mobile | Classic
Share by: