Get a hyperparameter tuning job

Gets a hyperparameter tuning job using the get_hyperparameter_tuning_job method.

Explore further

For detailed documentation that includes this code sample, see the following:

Code sample

Java

Before trying this sample, follow the Java setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Java API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  import 
  
 com.google.cloud.aiplatform.v1. HyperparameterTuningJob 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. HyperparameterTuningJobName 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. JobServiceClient 
 
 ; 
 import 
  
 com.google.cloud.aiplatform.v1. JobServiceSettings 
 
 ; 
 import 
  
 java.io.IOException 
 ; 
 public 
  
 class 
 GetHyperparameterTuningJobSample 
  
 { 
  
 public 
  
 static 
  
 void 
  
 main 
 ( 
 String 
 [] 
  
 args 
 ) 
  
 throws 
  
 IOException 
  
 { 
  
 // TODO(developer): Replace these variables before running the sample. 
  
 String 
  
 project 
  
 = 
  
 "PROJECT" 
 ; 
  
 String 
  
 hyperparameterTuningJobId 
  
 = 
  
 "HYPERPARAMETER_TUNING_JOB_ID" 
 ; 
  
 getHyperparameterTuningJobSample 
 ( 
 project 
 , 
  
 hyperparameterTuningJobId 
 ); 
  
 } 
  
 static 
  
 void 
  
 getHyperparameterTuningJobSample 
 ( 
 String 
  
 project 
 , 
  
 String 
  
 hyperparameterTuningJobId 
 ) 
  
 throws 
  
 IOException 
  
 { 
  
  JobServiceSettings 
 
  
 settings 
  
 = 
  
  JobServiceSettings 
 
 . 
 newBuilder 
 () 
  
 . 
 setEndpoint 
 ( 
 "us-central1-aiplatform.googleapis.com:443" 
 ) 
  
 . 
 build 
 (); 
  
 String 
  
 location 
  
 = 
  
 "us-central1" 
 ; 
  
 // Initialize client that will be used to send requests. This client only needs to be created 
  
 // once, and can be reused for multiple requests. After completing all of your requests, call 
  
 // the "close" method on the client to safely clean up any remaining background resources. 
  
 try 
  
 ( 
  JobServiceClient 
 
  
 client 
  
 = 
  
  JobServiceClient 
 
 . 
 create 
 ( 
 settings 
 )) 
  
 { 
  
  HyperparameterTuningJobName 
 
  
 name 
  
 = 
  
  HyperparameterTuningJobName 
 
 . 
 of 
 ( 
 project 
 , 
  
 location 
 , 
  
 hyperparameterTuningJobId 
 ); 
  
  HyperparameterTuningJob 
 
  
 response 
  
 = 
  
 client 
 . 
 getHyperparameterTuningJob 
 ( 
 name 
 ); 
  
 System 
 . 
 out 
 . 
 format 
 ( 
 "response: %s\n" 
 , 
  
 response 
 ); 
  
 } 
  
 } 
 } 
 

Node.js

Before trying this sample, follow the Node.js setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Node.js API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  /** 
 * TODO(developer): Uncomment these variables before running the sample.\ 
 * (Not necessary if passing values as arguments) 
 */ 
 // const tuningJobId = 'YOUR_TUNING_JOB_ID'; 
 // const project = 'YOUR_PROJECT_ID'; 
 // const location = 'YOUR_PROJECT_LOCATION'; 
 // Imports the Google Cloud Model Service Client library 
 const 
  
 { 
 JobServiceClient 
 } 
  
 = 
  
 require 
 ( 
 ' @google-cloud/aiplatform 
' 
 ); 
 // Specifies the location of the api endpoint 
 const 
  
 clientOptions 
  
 = 
  
 { 
  
 apiEndpoint 
 : 
  
 'us-central1-aiplatform.googleapis.com' 
 , 
 }; 
 // Instantiates a client 
 const 
  
 jobServiceClient 
  
 = 
  
 new 
  
  JobServiceClient 
 
 ( 
 clientOptions 
 ); 
 async 
  
 function 
  
 getHyperparameterTuningJob 
 () 
  
 { 
  
 // Configure the parent resource 
  
 const 
  
 name 
  
 = 
  
 jobServiceClient 
 . 
 hyperparameterTuningJobPath 
 ( 
  
 project 
 , 
  
 location 
 , 
  
 tuningJobId 
  
 ); 
  
 const 
  
 request 
  
 = 
  
 { 
  
 name 
 , 
  
 }; 
  
 // Get and print out a list of all the endpoints for this resource 
  
 const 
  
 [ 
 response 
 ] 
  
 = 
  
 await 
  
 jobServiceClient 
 . 
 getHyperparameterTuningJob 
 ( 
 request 
 ); 
  
 console 
 . 
 log 
 ( 
 'Get hyperparameter tuning job response' 
 ); 
  
 console 
 . 
 log 
 ( 
 `\tDisplay name: 
 ${ 
 response 
 . 
 displayName 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
 `\tTuning job resource name: 
 ${ 
 response 
 . 
 name 
 } 
 ` 
 ); 
  
 console 
 . 
 log 
 ( 
 `\tJob status: 
 ${ 
 response 
 . 
 state 
 } 
 ` 
 ); 
 } 
 getHyperparameterTuningJob 
 (); 
 

Python

Before trying this sample, follow the Python setup instructions in the Vertex AI quickstart using client libraries . For more information, see the Vertex AI Python API reference documentation .

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment .

  from 
  
 google.cloud 
  
 import 
 aiplatform 
 def 
  
 get_hyperparameter_tuning_job_sample 
 ( 
 project 
 : 
 str 
 , 
 hyperparameter_tuning_job_id 
 : 
 str 
 , 
 location 
 : 
 str 
 = 
 "us-central1" 
 , 
 api_endpoint 
 : 
 str 
 = 
 "us-central1-aiplatform.googleapis.com" 
 , 
 ): 
 # The AI Platform services require regional API endpoints. 
 client_options 
 = 
 { 
 "api_endpoint" 
 : 
 api_endpoint 
 } 
 # Initialize client that will be used to create and send requests. 
 # This client only needs to be created once, and can be reused for multiple requests. 
 client 
 = 
 aiplatform 
 . 
 gapic 
 . 
  JobServiceClient 
 
 ( 
 client_options 
 = 
 client_options 
 ) 
 name 
 = 
 client 
 . 
  hyperparameter_tuning_job_path 
 
 ( 
 project 
 = 
 project 
 , 
 location 
 = 
 location 
 , 
 hyperparameter_tuning_job 
 = 
 hyperparameter_tuning_job_id 
 , 
 ) 
 response 
 = 
 client 
 . 
  get_hyperparameter_tuning_job 
 
 ( 
 name 
 = 
 name 
 ) 
 print 
 ( 
 "response:" 
 , 
 response 
 ) 
 

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser .

Create a Mobile Website
View Site in Mobile | Classic
Share by: