Stay organized with collectionsSave and categorize content based on your preferences.
Returns a point at the center of the highest-dimension components of the geometry. Lower-dimensional components are ignored, so the centroid of a geometry containing two polygons, three lines and a point is equivalent to the centroid of a geometry containing just the two polygons.
Usage
Returns
Geometry.centroid(maxError,proj)
Geometry
Argument
Type
Details
this:geometry
Geometry
Calculates the centroid of this geometry.
maxError
ErrorMargin, default: null
The maximum amount of error tolerated when performing any necessary reprojection.
proj
Projection, default: null
If specified, the result will be in this projection. Otherwise it will be in EPSG:4326.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-06-05 UTC."],[[["\u003cp\u003eReturns a central point based on the highest-dimension components of a geometry, ignoring lower dimensions.\u003c/p\u003e\n"],["\u003cp\u003e\u003ccode\u003ecentroid()\u003c/code\u003e can be applied to a Geometry object to compute its center point.\u003c/p\u003e\n"],["\u003cp\u003eOptional parameters \u003ccode\u003emaxError\u003c/code\u003e and \u003ccode\u003eproj\u003c/code\u003e control reprojection tolerance and output projection, respectively.\u003c/p\u003e\n"],["\u003cp\u003eThe default projection for the returned centroid is EPSG:4326 if \u003ccode\u003eproj\u003c/code\u003e is not specified.\u003c/p\u003e\n"]]],["The `Geometry.centroid()` method calculates the center point of the highest-dimensional components within a geometry, ignoring lower-dimensional parts. It accepts `maxError` for error tolerance during reprojection and `proj` to specify the output projection (defaulting to EPSG:4326). The method returns a `Geometry` object. Example usage in JavaScript and Python demonstrates defining a polygon geometry, finding its centroid, and displaying both on a map.\n"],null,["# ee.Geometry.centroid\n\nReturns a point at the center of the highest-dimension components of the geometry. Lower-dimensional components are ignored, so the centroid of a geometry containing two polygons, three lines and a point is equivalent to the centroid of a geometry containing just the two polygons.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|----------------------------------------------|----------|\n| Geometry.centroid`(`*maxError* `, `*proj*`)` | Geometry |\n\n| Argument | Type | Details |\n|------------------|----------------------------|-----------------------------------------------------------------------------------------|\n| this: `geometry` | Geometry | Calculates the centroid of this geometry. |\n| `maxError` | ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |\n| `proj` | Projection, default: null | If specified, the result will be in this projection. Otherwise it will be in EPSG:4326. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Define a Geometry object.\nvar geometry = ee.Geometry({\n 'type': 'Polygon',\n 'coordinates':\n [[[-122.081, 37.417],\n [-122.086, 37.421],\n [-122.084, 37.418],\n [-122.089, 37.416]]]\n});\n\n// Apply the centroid method to the Geometry object.\nvar geometryCentroid = geometry.centroid({'maxError': 1});\n\n// Print the result to the console.\nprint('geometry.centroid(...) =', geometryCentroid);\n\n// Display relevant geometries on the map.\nMap.setCenter(-122.085, 37.422, 15);\nMap.addLayer(geometry,\n {'color': 'black'},\n 'Geometry [black]: geometry');\nMap.addLayer(geometryCentroid,\n {'color': 'red'},\n 'Result [red]: geometry.centroid');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Define a Geometry object.\ngeometry = ee.Geometry({\n 'type': 'Polygon',\n 'coordinates': [[\n [-122.081, 37.417],\n [-122.086, 37.421],\n [-122.084, 37.418],\n [-122.089, 37.416],\n ]],\n})\n\n# Apply the centroid method to the Geometry object.\ngeometry_centroid = geometry.centroid(maxError=1)\n\n# Print the result.\ndisplay('geometry.centroid(...) =', geometry_centroid)\n\n# Display relevant geometries on the map.\nm = geemap.Map()\nm.set_center(-122.085, 37.422, 15)\nm.add_layer(geometry, {'color': 'black'}, 'Geometry [black]: geometry')\nm.add_layer(\n geometry_centroid, {'color': 'red'}, 'Result [red]: geometry.centroid'\n)\nm\n```"]]