AI-generated Key Takeaways
-
The distance method returns the minimum distance between two geometries.
-
The method takes
right(Geometry), optionalmaxError(ErrorMargin), optionalproj(Projection), and optionalspherical(Boolean) as arguments. -
The method returns a Float value representing the distance.
-
Examples are provided for both JavaScript and Python environments.
| Usage | Returns |
|---|---|
MultiPolygon.
distance
(right, maxError
, proj
, spherical
)
|
Float |
| Argument | Type | Details |
|---|---|---|
|
this:
left
|
Geometry | The geometry used as the left operand of the operation. |
right
|
Geometry | The geometry used as the right operand of the operation. |
maxError
|
ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |
proj
|
Projection, default: null | The projection in which to perform the operation. If not specified, the operation will be performed in a spherical coordinate system, and linear distances will be in meters on the sphere. |
spherical
|
Boolean, default: false | If true, the calculation will be done on the unit sphere. If false, the calculation will be elliptical, taking earth flattening into account. Ignored if proj is specified. Default is false. |
Examples
Code Editor (JavaScript)
// Define a MultiPolygon object. var multiPolygon = ee . Geometry . MultiPolygon ( [[[[ - 122.092 , 37.424 ], [ - 122.086 , 37.418 ], [ - 122.079 , 37.425 ], [ - 122.085 , 37.423 ]]], [[[ - 122.081 , 37.417 ], [ - 122.086 , 37.421 ], [ - 122.089 , 37.416 ]]]]); // Define other inputs. var inputGeom = ee . Geometry . Point ( - 122.090 , 37.423 ); // Apply the distance method to the MultiPolygon object. var multiPolygonDistance = multiPolygon . distance ({ 'right' : inputGeom , 'maxError' : 1 }); // Print the result to the console. print ( 'multiPolygon.distance(...) =' , multiPolygonDistance ); // Display relevant geometries on the map. Map . setCenter ( - 122.085 , 37.422 , 15 ); Map . addLayer ( multiPolygon , { 'color' : 'black' }, 'Geometry [black]: multiPolygon' ); Map . addLayer ( inputGeom , { 'color' : 'blue' }, 'Parameter [blue]: inputGeom' );
import ee import geemap.core as geemap
Colab (Python)
# Define a MultiPolygon object. multipolygon = ee . Geometry . MultiPolygon ([ [[ [ - 122.092 , 37.424 ], [ - 122.086 , 37.418 ], [ - 122.079 , 37.425 ], [ - 122.085 , 37.423 ], ]], [[[ - 122.081 , 37.417 ], [ - 122.086 , 37.421 ], [ - 122.089 , 37.416 ]]], ]) # Define other inputs. input_geom = ee . Geometry . Point ( - 122.090 , 37.423 ) # Apply the distance method to the MultiPolygon object. multipolygon_distance = multipolygon . distance ( right = input_geom , maxError = 1 ) # Print the result. display ( 'multipolygon.distance(...) =' , multipolygon_distance ) # Display relevant geometries on the map. m = geemap . Map () m . set_center ( - 122.085 , 37.422 , 15 ) m . add_layer ( multipolygon , { 'color' : 'black' }, 'Geometry [black]: multipolygon' ) m . add_layer ( input_geom , { 'color' : 'blue' }, 'Parameter [blue]: input_geom' ) m

