ee.ImageCollection.mode

Reduces an image collection by calculating the most common value at each pixel across the stack of all matching bands. Bands are matched by name.
Usage Returns
ImageCollection. mode () Image
Argument Type Details
this: collection
ImageCollection The image collection to reduce.

Examples

Code Editor (JavaScript)

 // Sentinel-2 image collection for July 2021 intersecting a point of interest. 
 // Reflectance, cloud probability, and scene classification bands are selected. 
 var 
  
 col 
  
 = 
  
 ee 
 . 
 ImageCollection 
 ( 
 'COPERNICUS/S2_SR' 
 ) 
  
 . 
 filterDate 
 ( 
 '2021-07-01' 
 , 
  
 '2021-08-01' 
 ) 
  
 . 
 filterBounds 
 ( 
 ee 
 . 
 Geometry 
 . 
 Point 
 ( 
 - 
 122.373 
 , 
  
 37.448 
 )) 
  
 . 
 select 
 ( 
 'B.*|MSK_CLDPRB|SCL' 
 ); 
 // Visualization parameters for reflectance RGB. 
 var 
  
 visRefl 
  
 = 
  
 { 
  
 bands 
 : 
  
 [ 
 'B11' 
 , 
  
 'B8' 
 , 
  
 'B3' 
 ], 
  
 min 
 : 
  
 0 
 , 
  
 max 
 : 
  
 4000 
 }; 
 Map 
 . 
 setCenter 
 ( 
 - 
 122.373 
 , 
  
 37.448 
 , 
  
 9 
 ); 
 Map 
 . 
 addLayer 
 ( 
 col 
 , 
  
 visRefl 
 , 
  
 'Collection reference' 
 , 
  
 false 
 ); 
 // Reduce the collection to a single image using a variety of methods. 
 var 
  
 mean 
  
 = 
  
 col 
 . 
 mean 
 (); 
 Map 
 . 
 addLayer 
 ( 
 mean 
 , 
  
 visRefl 
 , 
  
 'Mean (B11, B8, B3)' 
 ); 
 var 
  
 median 
  
 = 
  
 col 
 . 
 median 
 (); 
 Map 
 . 
 addLayer 
 ( 
 median 
 , 
  
 visRefl 
 , 
  
 'Median (B11, B8, B3)' 
 ); 
 var 
  
 min 
  
 = 
  
 col 
 . 
 min 
 (); 
 Map 
 . 
 addLayer 
 ( 
 min 
 , 
  
 visRefl 
 , 
  
 'Min (B11, B8, B3)' 
 ); 
 var 
  
 max 
  
 = 
  
 col 
 . 
 max 
 (); 
 Map 
 . 
 addLayer 
 ( 
 max 
 , 
  
 visRefl 
 , 
  
 'Max (B11, B8, B3)' 
 ); 
 var 
  
 sum 
  
 = 
  
 col 
 . 
 sum 
 (); 
 Map 
 . 
 addLayer 
 ( 
 sum 
 , 
  
 { 
 bands 
 : 
  
 [ 
 'MSK_CLDPRB' 
 ], 
  
 min 
 : 
  
 0 
 , 
  
 max 
 : 
  
 500 
 }, 
  
 'Sum (MSK_CLDPRB)' 
 ); 
 var 
  
 product 
  
 = 
  
 col 
 . 
 product 
 (); 
 Map 
 . 
 addLayer 
 ( 
 product 
 , 
  
 { 
 bands 
 : 
  
 [ 
 'MSK_CLDPRB' 
 ], 
  
 min 
 : 
  
 0 
 , 
  
 max 
 : 
  
 1e10 
 }, 
  
 'Product (MSK_CLDPRB)' 
 ); 
 // ee.ImageCollection.mode returns the most common value. If multiple mode 
 // values occur, the minimum mode value is returned. 
 var 
  
 mode 
  
 = 
  
 col 
 . 
 mode 
 (); 
 Map 
 . 
 addLayer 
 ( 
 mode 
 , 
  
 { 
 bands 
 : 
  
 [ 
 'SCL' 
 ], 
  
 min 
 : 
  
 1 
 , 
  
 max 
 : 
  
 11 
 }, 
  
 'Mode (pixel class)' 
 ); 
 // ee.ImageCollection.count returns the frequency of valid observations. Here, 
 // image pixels are masked based on cloud probability to add valid observation 
 // variability to the collection. Note that pixels with no valid observations 
 // are masked out of the returned image. 
 var 
  
 notCloudCol 
  
 = 
  
 col 
 . 
 map 
 ( 
 function 
 ( 
 img 
 ) 
  
 { 
  
 return 
  
 img 
 . 
 updateMask 
 ( 
 img 
 . 
 select 
 ( 
 'MSK_CLDPRB' 
 ). 
 lte 
 ( 
 10 
 )); 
 }); 
 var 
  
 count 
  
 = 
  
 notCloudCol 
 . 
 count 
 (); 
 Map 
 . 
 addLayer 
 ( 
 count 
 , 
  
 { 
 min 
 : 
  
 1 
 , 
  
 max 
 : 
  
 5 
 }, 
  
 'Count (not cloud observations)' 
 ); 
 // ee.ImageCollection.mosaic composites images according to their position in 
 // the collection (priority is last to first) and pixel mask status, where 
 // invalid (mask value 0) pixels are filled by preceding valid (mask value >0) 
 // pixels. 
 var 
  
 mosaic 
  
 = 
  
 notCloudCol 
 . 
 mosaic 
 (); 
 Map 
 . 
 addLayer 
 ( 
 mosaic 
 , 
  
 visRefl 
 , 
  
 'Mosaic (B11, B8, B3)' 
 ); 

Python setup

See the Python Environment page for information on the Python API and using geemap for interactive development.

 import 
  
 ee 
 import 
  
 geemap.core 
  
 as 
  
 geemap 

Colab (Python)

 # Sentinel-2 image collection for July 2021 intersecting a point of interest. 
 # Reflectance, cloud probability, and scene classification bands are selected. 
 col 
 = 
 ( 
 ee 
 . 
 ImageCollection 
 ( 
 'COPERNICUS/S2_SR' 
 ) 
 . 
 filterDate 
 ( 
 '2021-07-01' 
 , 
 '2021-08-01' 
 ) 
 . 
 filterBounds 
 ( 
 ee 
 . 
 Geometry 
 . 
 Point 
 ( 
 - 
 122.373 
 , 
 37.448 
 )) 
 . 
 select 
 ( 
 'B.*|MSK_CLDPRB|SCL' 
 ) 
 ) 
 # Visualization parameters for reflectance RGB. 
 vis_refl 
 = 
 { 
 'bands' 
 : 
 [ 
 'B11' 
 , 
 'B8' 
 , 
 'B3' 
 ], 
 'min' 
 : 
 0 
 , 
 'max' 
 : 
 4000 
 } 
 m 
 = 
 geemap 
 . 
 Map 
 () 
 m 
 . 
 set_center 
 ( 
 - 
 122.373 
 , 
 37.448 
 , 
 9 
 ) 
 m 
 . 
 add_layer 
 ( 
 col 
 , 
 vis_refl 
 , 
 'Collection reference' 
 , 
 False 
 ) 
 # Reduce the collection to a single image using a variety of methods. 
 mean 
 = 
 col 
 . 
 mean 
 () 
 m 
 . 
 add_layer 
 ( 
 mean 
 , 
 vis_refl 
 , 
 'Mean (B11, B8, B3)' 
 ) 
 median 
 = 
 col 
 . 
 median 
 () 
 m 
 . 
 add_layer 
 ( 
 median 
 , 
 vis_refl 
 , 
 'Median (B11, B8, B3)' 
 ) 
 min 
 = 
 col 
 . 
 min 
 () 
 m 
 . 
 add_layer 
 ( 
 min 
 , 
 vis_refl 
 , 
 'Min (B11, B8, B3)' 
 ) 
 max 
 = 
 col 
 . 
 max 
 () 
 m 
 . 
 add_layer 
 ( 
 max 
 , 
 vis_refl 
 , 
 'Max (B11, B8, B3)' 
 ) 
 sum 
 = 
 col 
 . 
 sum 
 () 
 m 
 . 
 add_layer 
 ( 
 sum 
 , 
 { 
 'bands' 
 : 
 [ 
 'MSK_CLDPRB' 
 ], 
 'min' 
 : 
 0 
 , 
 'max' 
 : 
 500 
 }, 
 'Sum (MSK_CLDPRB)' 
 ) 
 product 
 = 
 col 
 . 
 product 
 () 
 m 
 . 
 add_layer 
 ( 
 product 
 , 
 { 
 'bands' 
 : 
 [ 
 'MSK_CLDPRB' 
 ], 
 'min' 
 : 
 0 
 , 
 'max' 
 : 
 1e10 
 }, 
 'Product (MSK_CLDPRB)' 
 , 
 ) 
 # ee.ImageCollection.mode returns the most common value. If multiple mode 
 # values occur, the minimum mode value is returned. 
 mode 
 = 
 col 
 . 
 mode 
 () 
 m 
 . 
 add_layer 
 ( 
 mode 
 , 
 { 
 'bands' 
 : 
 [ 
 'SCL' 
 ], 
 'min' 
 : 
 1 
 , 
 'max' 
 : 
 11 
 }, 
 'Mode (pixel class)' 
 ) 
 # ee.ImageCollection.count returns the frequency of valid observations. Here, 
 # image pixels are masked based on cloud probability to add valid observation 
 # variability to the collection. Note that pixels with no valid observations 
 # are masked out of the returned image. 
 not_cloud_col 
 = 
 col 
 . 
 map 
 ( 
 lambda 
 img 
 : 
 img 
 . 
 updateMask 
 ( 
 img 
 . 
 select 
 ( 
 'MSK_CLDPRB' 
 ) 
 . 
 lte 
 ( 
 10 
 )) 
 ) 
 count 
 = 
 not_cloud_col 
 . 
 count 
 () 
 m 
 . 
 add_layer 
 ( 
 count 
 , 
 { 
 'min' 
 : 
 1 
 , 
 'max' 
 : 
 5 
 }, 
 'Count (not cloud observations)' 
 ) 
 # ee.ImageCollection.mosaic composites images according to their position in 
 # the collection (priority is last to first) and pixel mask status, where 
 # invalid (mask value 0) pixels are filled by preceding valid (mask value >0) 
 # pixels. 
 mosaic 
 = 
 not_cloud_col 
 . 
 mosaic 
 () 
 m 
 . 
 add_layer 
 ( 
 mosaic 
 , 
 vis_refl 
 , 
 'Mosaic (B11, B8, B3)' 
 ) 
 m 
Create a Mobile Website
View Site in Mobile | Classic
Share by: