アフィリエイト広告を利用しています
ファン
検索
<< 2024年08月 >>
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
最新記事
写真ギャラリー
最新コメント
タグクラウド
カテゴリアーカイブ
プロフィール

広告

posted by fanblog

2023年11月15日

コラッツ予想(その11)

1から順番にさかのぼって、分析している訳ですが、ひとまず、 「4」 まで辿り着く事ができました。「4」の先は2方向に分かれており、 片方は8(偶数)、もう片方(奇数)は1 となっています。

 そもそも、 数字「1」 が出てきた時点で、すでに 話がこんがらがり出しているのですが、ここはひとまず、「8」の方に目を向けて、解析を続けていく事にしましょう。

「8」 は、 「偶数 8 割る2=4」 によって導き出された数字でした。しかし、振り返ってみますと、これまでの数字だって、
「偶数 4 割る2=2」
「偶数 2 割る2=1」

 と、 コラッツの偶数の数式を逆算して、見つけ出した数字だったのです。

 でしたら、このまま、 偶数の数式ばかりを逆算してゆき 、その先にある数字もどんどん繋げてしまいましょう。

1、2、4、8、16、32、64、128、256、512、1024、2048、4096、8192、16384・・・

 もはや、コラッツ予想とも関係なく、ただ、 2の倍数を次々に倍にしていっただけ のようにも見えますが、これはこれで、 コラッツの計算の数列としては、成立しているのであります。

 そして、数字が無限である以上、 この数列は、永遠に、莫大な数になっても、どこまでも続いていく 事になるのでしょう。それだけではなく、 この数列に並んだ全ての数字が、その時点で、コラッツ予想の確定数字にも該当した事になるのです。

 過去のコラッツ予想への挑戦者たちは、まず、 任意の整数の方を出発点にして、その整数が1まで分解できるかどうか を一つ一つ調べてきましたが、私のやり方では、 1から出発して、そこへと辿り着く整数をコラッツ予想の確定数字にと判定していった のでした。

この記事へのコメント
コメントを書く

お名前:

メールアドレス:


ホームページアドレス:

コメント:

※ブログオーナーが承認したコメントのみ表示されます。

この記事へのトラックバックURL
https://fanblogs.jp/tb/12304502
※ブログオーナーが承認したトラックバックのみ表示されます。

この記事へのトラックバック
×

この広告は30日以上新しい記事の更新がないブログに表示されております。

Mobilize your Site
スマートフォン版を閲覧 | PC版を閲覧
Share by: