認知療法と診察

9 時半起床.
鬱が苦しい. 頓服を飲んで何とか起きることができた.
今日は認知療法に参加してから診察を受けて薬を出してもらう.
疲労感も強いのだが, 家を出る 12 時過ぎまでにゆっくり体調を整えればいいだろう.

家を出る際の緊張と恐怖を乗り越えるのが若干苦しかったが何とか大丈夫だった.

認知療法では, 頓服をうまく服用することで朝の早い時間に起きるようになれたこと, それによって生活のリズムが少しずつできてきたこと, チラシ配りは何とか続けられそうであることなどを話した.
人とのコミュニケーションへの恐怖が相変わらずであることも.

診察はいつもの通り, 無理をしないこと, 焦らないこと, 太陽の光を浴びることを指示された.
梅雨に入ると鬱病者は体調を崩しやすいので, 特に無理をせず休みをとること睡眠をとることを心懸けてとも言われた.

自分は一年を通しての体調を振り返った場合, 年末年始と梅雨のときが一番気分が沈む. 辛い時期がやって来た.
関東も梅雨入りしたので無理しないことと休息をとることを意識したほうがいいな.
posted by 底彦 at 10:01 | Comment(0) | TrackBack(0) |

2017年06月09日

数学: 20 までの九九

午後の診察の待ち時間にちょっと計算をやった.
昨日か一昨日, 寝込んでいるときにラジオのある番組で, インドでは子供たちに 20 までの九九を教えていると聞いた. 丸暗記するのかどうかは知らないが, 丸暗記しなくても 20 までの掛け算を楽に計算できる方法は無いかと少し考えてみた.

結論から言うと, とりあえず以下の程度くらいのやり方は考えついた. これは少し数学に興味がある人ならすぐに思い付くだろう.
20 までの九九の計算が少しだけ便利になるので書き留めておく.
何を今さらと言う人は多そうだが自分のメモとして...

(1) $1,..., 20$ までの各数の $2$ 乗を覚えておく.
\begin{align*}
1^2 &= 1 \\
2^2 &= 4 \\
3^2 &= 9 \\
4^2 &= 16 \\
5^2 &= 25 \\
6^2 &= 36 \\
7^2 &= 49 \\
8^2 &= 64 \\
9^2 &= 81 \\
10^2 &= 100 \\
11^2 &= 121 \\
12^2 &= 144 \\
13^2 &= 169 \\
14^2 &= 196 \\
15^2 &= 225 \\
16^2 &= 256 \\
17^2 &= 289 \\
18^2 &= 324 \\
19^2 &= 361 \\
20^2 &= 400
\end{align*}
(2) 20 以下の 2 つの異なる数の計算: その 1
2 つの数 $m$ と $n$ の差が偶数のとき, 因数分解の公式
\begin{equation*}
(a + b)(a - b) = a^2 - b^2
\end{equation*}
を使う. たとえば
\begin{align*}
19 \cdot 13 &= (16 + 3)(16 - 3) = 256 - 9 = 247 \\
16 \cdot 12 &= (14 + 2)(14 - 2) = 196 - 4 = 192 \\
17 \cdot 15 &= (16 + 1)(16 - 1) = 255 - 6 = 255
\end{align*}
(3) 20 以下の 2 つの異なる数の計算: その 2
2 つの数 $m$ と $n$ の差が奇数のとき $\Rightarrow$ その 1 を使う. たとえば
\begin{align*}
18 \cdot 13 &= (15 + 3)[(15 - 3) + 1] = (15 + 3)(15 - 3) + 18 \\
&= (225 - 9) + 18 = 216 + 18 = 234 \\
16 \cdot 11 &= (13 + 3)[(13 - 3) + 1] = (13 + 3)(13 - 3) + 16 \\
&= (169 - 9) + 16 = 160 + 16 = 176 \\
13 \cdot 12 &= (12 + 1)[(12 - 1) + 1] = (12 + 1)(12 - 1) + 13 \\
&= (144 - 1) + 13 = 143 + 13 = 156
\end{align*}
この 2 番目と 3 番目はそれぞれ
\begin{align*}
16 \cdot 11 &= 16 \cdot 10 + 16 = 176 \\
13 \cdot 12 &= 12^2 + 12 = 144 + 12 = 156
\end{align*}
のように計算したほうが楽のような気もする. しかしとりあえずこういう風な感じでできるというのを書き下してみた.
もうちょっとうまい方法があるかも知れない.
面白いのでまた気が空いた時間ができたら考えてみる. 20 以下にこだわる必要も無いしね.



2017 年 6 月 11 日付記:
(4) 20 以下の 2 つの異なる数の計算: その 3
2 つの数 $m$ と $n$ の差が奇数のときの別のやり方.
$m \gt n$ とする. $m$ と $n$ の差が奇数だからある正の整数 $k$ が存在して
\begin{equation*}
m - n = 2k + 1
\end{equation*}
と表わすことができる. ここで
\begin{equation*}
h = m - k - 1 = n + k
\end{equation*}
とおくと
\begin{align*}
m \cdot n &= (m - k - 1 + k + 1)(n + k - k) = ((h + 1) + k)(h - k) \\
&= h(h + 1) - k(k + 1)
\end{align*}
が成り立つ. こちらの計算方法を使うほうが自分にとっては (3) より計算しやすい.
\begin{align*}
18 \cdot 13 &= (16 + 2)(15 - 2) = 15 \cdot 16 - 2 \cdot 3 \\
&= 240 - 6 = 234 \\
16 \cdot 11 &= (14 + 2)(13 - 2) = 13 \cdot 14 - 2 \cdot 3 \\
&= 182 - 6 = 176 \\
13 \cdot 12 &= (13 + 0)(12 - 0) = 12 \cdot 13 - 0 \cdot 1 \\
&= 156 - 0 = 156
\end{align*}
posted by 底彦 at 20:33 | Comment(0) | TrackBack(0) | 数学
ファン
検索
<< 2017年06月 >>
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30
最新記事
最新コメント
眼科の定期検査 〜 散歩 by コトタマ (02/15)
眼科の定期検査 by 三文字寄れば文殊のヒフミヨ (09/21)
本を読んで過ごす by 底彦 (12/13)
本を読んで過ごす by ねこ (12/12)
数学の計算をする by 底彦 (12/04)
タグクラウド
カテゴリアーカイブ
仕事 (59)
社会復帰 (22)
(44)
コンピューター (211)
(1481)
借金 (8)
勉強 (14)
(13)
数学 (97)
運動 (8)
日常生活 (1409)
(204)
健康 (38)
読書 (22)
プロフィール

ブログランキング・にほんブログ村へ
にほんブログ村
にほんブログ村 メンタルヘルスブログ うつ病(鬱病)へ
にほんブログ村
にほんブログ村 科学ブログ 数学へ
にほんブログ村
にほんブログ村 IT技術ブログ プログラム・プログラマーへ
にほんブログ村
Mobilize your Site
スマートフォン版を閲覧 | PC版を閲覧
Share by: