7 時半に起きる.
少し踏ん張った.
実は昨日寝込んでいるときに, こういう日が少しずつ増えていって寝た切りになってしまうのではという恐怖感に襲われたのだ.
それで今朝ちょっとだけ無理をして起きた.
一日寝込まずに夜まで辿り着きたい.
さしあたり今日はそれだけできればいいと思った.
午前中は数学をやって過ごす. 体調は良い.
昼食は玉子饂飩.
お昼の片付けをしていると, 鬱が苦しくなってきた.
辛い. しかし寝込むほどではない.
天気も良かったので散歩に出て小一時間歩く.
散歩をして体調が悪くなってしまうこともあるのだが, 今日は体が温まるに連れて気分も上向いてきた. 良かった.
午後も数学をやる.
絵を描くとかプログラミングの勉強をやるとかも考えていたのだが, 数学を考えたかったので.
シャワーを浴びて夕食をとる.
鯖塩焼きと納豆とご飯.
食後, 区切りが付くまで数学をやりたかったが, どうにも頭が回らなくなってしまい断念する.
寝込まずに済んだがけっこう無理をしたと思う.
昼間に踏ん張って散歩に出たこと. 数学を割と長い時間やったことなど.
明日体調が崩れなければこれくらいまでは無理がきくようになったと言えるのだろうか.
2017年03月30日
数学: 圏の骨格 (skeleton)
今日は一日, 数学の問題を考えていた.
体調が安定せず, 細切れの時間を繋ぎ合わせて証明を考えていた問題である.
問題. $\mathscr{C}$ を任意の圏とする. このとき, $\mathscr{C}$ の射の全体 $\mathrm{Ar}(\mathscr{C})$ にも圏の構造が入る. 圏としての $\mathrm{Ar}(\mathscr{C})$ を $\mathscr{C}$ の射圏 (arrow category) と呼ぶ.
$\mathrm{Ob}(\mathscr{C})$ の対象の各同値類から代表となる 1 つの対象を選んでその集まりを $O$ とする. 同様に $\mathrm{Ar}(\mathscr{C})$ の射の各同値類から代表となる 1 つの射を選んでその集まりを $A$ とする.
$A$ の各元に対して, そのソースとターゲットとなる $O$ の元, $O$ の各元に対して, その上の恒等射となる $A$ の元, および $A$ 上の部分 2 項演算 "$\circ$" を射の合成として適当に定めることにより, $O$ の元を対象, $A$ の元を射として新たな圏が構成されることを示せ.
このようにして構成された圏を, 圏 $\mathscr{C}$ の骨格 (skeleton) と呼び, $\mathrm{sk}(\mathscr{C})$ と表わす.
この問題は解けたと思っていた.
しかし, その証明が何だかぼんやりしてるなあと感じていて, どうにも気になるのであらためてその証明を見直した.
そうしたらやはり間違いがあった.
圏 $\mathscr{C}$ の骨格となる圏 $\mathrm{sk}(\mathscr{C})$ に入れる射の合成の定義が駄目だった.
今のやり方だと, 骨格の構成がうまくいかない圏の具体例が見つかったのである.
これでは駄目だ. 夜までかけて証明を書き直した. あと一歩のところで疲れて倒れたが.
脳の中の長く使っていなかった部位を本当に久々 (10 年振りくらい?) に動かした感覚があった.
大変だったが懐しいような新鮮なような感じもした.
数学では何かを定義する際に, それが全体の理論の枠組みの中で矛盾を起こさないようにすること (well-defined にすること) が大切で, だから証明もそういったことが起こらないように進めなければいけない.
鬱が悪くなって, こういう繊細な思考を張り巡らせることが非常に難しくなって, ぼんやりとした感じしか持てなくなっていた.
そのぼんやり感を打破できたかも知れない. デリケートな思考の感覚を取り戻せたかも知れない.
体調が安定せず, 細切れの時間を繋ぎ合わせて証明を考えていた問題である.
問題. $\mathscr{C}$ を任意の圏とする. このとき, $\mathscr{C}$ の射の全体 $\mathrm{Ar}(\mathscr{C})$ にも圏の構造が入る. 圏としての $\mathrm{Ar}(\mathscr{C})$ を $\mathscr{C}$ の射圏 (arrow category) と呼ぶ.
$\mathrm{Ob}(\mathscr{C})$ の対象の各同値類から代表となる 1 つの対象を選んでその集まりを $O$ とする. 同様に $\mathrm{Ar}(\mathscr{C})$ の射の各同値類から代表となる 1 つの射を選んでその集まりを $A$ とする.
$A$ の各元に対して, そのソースとターゲットとなる $O$ の元, $O$ の各元に対して, その上の恒等射となる $A$ の元, および $A$ 上の部分 2 項演算 "$\circ$" を射の合成として適当に定めることにより, $O$ の元を対象, $A$ の元を射として新たな圏が構成されることを示せ.
このようにして構成された圏を, 圏 $\mathscr{C}$ の骨格 (skeleton) と呼び, $\mathrm{sk}(\mathscr{C})$ と表わす.
この問題は解けたと思っていた.
しかし, その証明が何だかぼんやりしてるなあと感じていて, どうにも気になるのであらためてその証明を見直した.
そうしたらやはり間違いがあった.
圏 $\mathscr{C}$ の骨格となる圏 $\mathrm{sk}(\mathscr{C})$ に入れる射の合成の定義が駄目だった.
今のやり方だと, 骨格の構成がうまくいかない圏の具体例が見つかったのである.
これでは駄目だ. 夜までかけて証明を書き直した. あと一歩のところで疲れて倒れたが.
脳の中の長く使っていなかった部位を本当に久々 (10 年振りくらい?) に動かした感覚があった.
大変だったが懐しいような新鮮なような感じもした.
数学では何かを定義する際に, それが全体の理論の枠組みの中で矛盾を起こさないようにすること (well-defined にすること) が大切で, だから証明もそういったことが起こらないように進めなければいけない.
鬱が悪くなって, こういう繊細な思考を張り巡らせることが非常に難しくなって, ぼんやりとした感じしか持てなくなっていた.
そのぼんやり感を打破できたかも知れない. デリケートな思考の感覚を取り戻せたかも知れない.